
HTTP Plugin for MySQL

HTTP Plugin for MySQL

Abstract

The HTTP Plugin for MySQL adds HTTP(S) interfaces to MySQL. Clients can use the HTTP respectively HTTPS
(SSL) protocol to query data stored in MySQL. The query language is SQL but other, simpler interfaces exist. All data
is serialized as JSON.

This version of MySQL Server HTTP Plugin is a Labs release, which means it's at an early development stage. It
contains several known bugs and limitation, and is meant primarily to give you a rough idea how this plugin will look
some day.

Likewise, the user API is anything but finalized. Be aware it will change in many respects.

Document generated on: 2014-09-22 (revision: 293)

iii

Table of Contents
1 Overview ... 1
2 Basic concepts .. 3

2.1 How it works .. 3
2.2 Security compared with a web service ... 3
2.3 User concept .. 4
2.4 Thread model ... 5

3 Installation ... 7
3.1 Plugin Installation ... 7
3.2 Example setup and data ... 7
3.3 Configuration server variables ... 11

4 User APIs (endpoints) ... 17
4.1 Feature comparison .. 17
4.2 Common properties .. 18
4.3 The SQL endpoint: /sql/ .. 19

4.3.1 API overview ... 20
4.3.2 HTTP methods, headers and status codes .. 22
4.3.3 JSON with padding (JSONP) .. 25
4.3.4 JSON content formats .. 26
4.3.5 JavaScript examples: basics, jQuery, Dojo .. 37
4.3.6 Limitations and pitfalls .. 53

4.4 The CRUD endpoint: /crud/ ... 53
4.4.1 API overview ... 54
4.4.2 HTTP methods, headers and status codes .. 55
4.4.3 JSON with padding (JSONP) .. 57
4.4.4 JSON content formats .. 58
4.4.5 JSON result document ... 59
4.4.6 JSON error document .. 59
4.4.7 JSON status document .. 60
4.4.8 Commandline examples ... 61
4.4.9 JavaScript examples: basics, AngularJS ... 65

4.5 The JSON document (DOC) endpoint: /doc/ ... 68
4.5.1 API overview ... 68
4.5.2 HTTP methods, headers and status codes .. 70
4.5.3 JSON content formats .. 81
4.5.4 JSON result document ... 82
4.5.5 JSON error document .. 83
4.5.6 JSON info document .. 83
4.5.7 JSON UUIDs document ... 84

iv

1

Chapter 1 Overview
The HTTP Plugin for MySQL is a proof-of concept of a HTTP(S) interface for MySQL 5.7.

The plugin adds a new protocol to the list of protocols understood by the server. It adds the HTTP
respectively HTTPS (SSL) protocol to the list of protocols that can be used to issue SQL commands.
Clients can now connect to MySQL either using the MySQL Client Server protocol and programming
language-dependent drivers, the MySQL Connectors, or using an arbitrary HTTP client.

Results for SQL commands are returned using the JSON format.

The server plugin is most useful in environments where protocols other than HTTP are blocked:

• JavaScript code run in a browser

• an application server behind a firewall and restricted to HTTP access

• a web services oriented environment

In such environments the plugin can be used instead of a self developed proxy which translates HTTP
requests into MySQL requests. Compared to a user developed proxy, the plugin means less latency,
lower complexity and the benefit of using a MySQL product. Please note, for very large deployments an
architecture using a proxy not integrated into MySQL may be a better solution to clearly separate software
layers and physical hardware used for the different layers.

The HTTP plugin implements multiple HTTP interfaces, for example:

• plain SQL access including meta data

• a CRUD (Create-Read-Update-Delete) interface to relational tables

• an interface for storing JSON documents in relational tables

Some of the interfaces follow Representational State Transfer (REST) ideas, some don't. See below for a
description of the various interfaces.

The plugin maps all HTTP accesses to SQL statements internally. Using SQL greatly simplifies the
development of the public HTTP interface. Please note, at this early stage of development performance is
not a primary goal. For example, it is possible to develop a similar plugin that uses lower level APIs of the
MySQL server to overcome SQL parsing and query planning overhead.

2

3

Chapter 2 Basic concepts

Table of Contents
2.1 How it works .. 3
2.2 Security compared with a web service ... 3
2.3 User concept .. 4
2.4 Thread model ... 5

2.1 How it works
MySQL supports a plugin API to create server components. There are several types of plugins such as
storage engine plugins, full-text parser plugins, authentication plugins, daemon plugins and many more.
Daemon plugins are not tailored to the creation of any specific server capabilities. A daemon plugin can be
used for any code that should be run by the server.

The HTTP plugin for MySQL is a daemon plugin. Daemon plugins, like all other plugins, run within the
process scope of the MySQL server.

To illustrate the working of the HTTP plugin, it can be considered to consist of two internal modules: a
HTTP server module and a core module.

The HTTP server module is started when the plugin is loaded into MySQL. Upon start, it begins listening
for HTTP requests, parses them and invokes callbacks of the core module to reply to them. The callbacks
in the core module then decide whether to return error messages, deny access or execute SQL statements
and return the results to the HTTP client through the HTTP server module. The HTTP server module
implements different user APIs for different use cases. The internal use of SQL is exposed to a different
degree. For example, the JSON document API aims to hide the use of SQL from the user altogether.

The HTTP server module is build using the PION HTTP library. PION is C++ library for developing HTTP
services. The HTTP library is multi-threaded and makes use of asynchronous APIs.

Plugins can use assorted plugin services built-in to and provided by MySQL. The HTTP plugin is using
a new SQL execution plugin service. The service allows plugins to execute arbitrary SQL statements
as a certain MySQL user through a well-defined API. MySQL returns the results of the SQL statements
executed as a binary stream to the plugin.

The HTTP plugin core module is using the service to answer HTTP requests. All HTTP requests are
mapped to appropriate SQL statements. Then, the HTTP plugin core module serializes the results as
JSON.

The new SQL execution plugin service is still under development and only available with the server in this
Lab release. This is why you cannot use the HTTP Plugin for MySQL preview with any other MySQL server
but the bundled one.

Following the pattern described it is possible to extend MySQL with other network protocols. For example,
one could develop a daemon plugin that combines the lightweight and fast websocket protocol with the rich
query capabilities of SQL.

2.2 Security compared with a web service
The HTTP plugin offers a similar level of security than a standard multi-tier web service build atop of
MySQL.

User concept

4

When the HTTP plugin for MySQL receives a request, the request is authorized using HTTP specific
methods. The only HTTP authentication mechanism supported by the HTTP plugin Lab release is HTTP
basic authentication. HTTP basic authentication is a weak yet simple to use method.

HTTP(S)/SSL can be used encrypt the communication channel. Please note, the Lab release does not
include SSL support for packaging reasons. SSL support is currently only available when using OpenSSL.
This release does not include OpenSSL support.

After successful HTTP authorization against the web service, methods of the web service are invoked,
which may further validate and sanitize the request. The same happens when using the HTTP plugin. The
HTTP request is parsed, checked for validity and mapped to built-in methods.

In a second step methods of the web service respectively methods of the HTTP plugin may execute
SQL statements. Those statements are executed on behalf of a certain MySQL user. The user must be
authenticated and authorized against MySQL. Standard MySQL user management features can be used to
grant the user only the permissions needed.

The web service and the HTTP plugin differ in the way they connect to the MySQL server. The web service
has to establish an external communication channel to MySQL, which should be secured. For example,
SSL can be used. The HTTP plugin operates within the process scope of the MySQL server and uses an
internal API execute SQL as a certain MySQL user.

In general, a web service build atop of MySQL and the HTTP plugin can achieve similar levels of security,
because they use a similar two-staged security approach. However, please note, the early development
stage of the HTTP plugin for MySQL. It does not match the maturity and feature set web services yet.

Please, be aware that HTTP basic authentication allows a username and password to be given as part of
the URL. As a result, the user credentials may appear in log files, including the history of a web browser.
Future versions may offer more sophisticated HTTP authentication methods.

2.3 User concept

The user and security concept of the HTTP plugin is two-staged. First, clients use HTTP basic
authentication to login towards the HTTP plugin itself. Then, if the plugin executes SQL statements to
answer the HTTP request, the SQL statements are issues on behalf on a certain MySQL user. Which
MySQL user depends on whether SSL/HTTPS is used or not.

Every resource is the HTTP plugin is protected using HTTP basic authentication. The use of HTTP basic
authentication is mandatory. It cannot be disabled. All HTTP plugin server resources are protected with
the same credentials. The HTTP basic authentication user name and passwort are configured through the
server variables myhttp_basic_auth_user_name and myhttp_basic_auth_user_passwd.

If no SSL is used for a request and the HTTP plugin seeks to execute SQL after successful basic
authentication, the plugin logs in towards MySQL as a certain MySQL user. MySQL identifies users by a
host, a user name and a password. The host, user name and password of the MySQL user to be used
by the HTTP plugin are configured with the server variables myhttp_default_mysql_user_host,
myhttp_default_mysql_user_name, myhttp_default_mysql_user_passwd. This way, MySQL
user credentials are never exposed in unprotected HTTP communication. The unencrypted HTTP
communication only shows the HTTP basic authentication credentials used to authorize a client towards
the HTTP plugin itself.

To execute SQL through the HTTP plugin as a different user but the predefined one, you must enable
SSL support and issue a HTTPS request. In case of HTTPS the plugin uses the user name and password
provided through HTTP basic authentication and the host from the HTTP request to log in towards
MySQL. Here, basic authentication is only a vehicle to provide MySQL credentials. The level of security is

Thread model

5

comparable to a standard client connection made through the MySQL Client/Server Protocol when using
native authentication. If, and only if, a MySQL Client Server protocol connection is encrypted and protected
using SSL, the password is sent from the client to the server without further encryption.

Currently, it is not possible to use SSL and restrict access to certain MySQL users. If SSL is enabled, all
MySQL users can log in. It is desired to further develop the user concept to give more control.

Only MySQL users that use the MySQL native password encryption can be used. This is true for the
default user of non-SSL connections and all other users in case of SSL connections.

2.4 Thread model

The thread model used for handling HTTP clients is more complex than the model used to handle standard
MySQL Client/Server Protocol clients. MySQL handles standard client connections using one thread per
connection. The thread handles the I/O operations and executes the clients commands. The HTTP Plugin
uses distinct threads for handling client connections and SQL execution. A HTTP Plugin thread handing I/O
operates indedently of the thread used for running SQL commands.

When the HTTP plugin is loaded into the MySQL server, the HTTP library starts threads to handle
connections. Upon connection of a HTTP client, the HTTP library invokes methods of the plugins core
module. The core module then may decide to create a MySQL thread for executing SQL statements. The
MySQL thread is initialized and prepared for SQL execution. Then SQL statements are executed and
results are sent back to the client through the HTTPs' library I/O thread. When all results have been sent,
the MySQL thread is destroyed.

The separation of the connection handling from the SQL execution impacts pluggable authentication used
by standard MySQL clients, the query cache and the commercial thread pool. All these MySQL server
modules require some connectivity between the server module and the client through a certain network
I/O abstraction layer. Because HTTP clients are handled using a HTTP library, the standard network I/O
abstraction layer is not available to these server modules. This affects the following server modules:

• MySQL pluggable authentication supports authentication methods that use a handshake protocol
to exchange passwords and other information. MySQL authentication plugins use an I/O API for
exchanging messages that is not provided by the HTTP library.

• The MySQL query cache is acessing functionality from the I/O abstraction layer used for standard
connections. Because this I/O abstraction layer is not available with HTTP connections, the HTTP plugin
explicitly disables the query cache when executing SQL.

• The commercial thread pool plugin requires the use of the standard connections the I/O abstraction
layer.

6

7

Chapter 3 Installation

Table of Contents
3.1 Plugin Installation ... 7
3.2 Example setup and data ... 7
3.3 Configuration server variables ... 11

The HTTP Plugin is provided as a MySQL Labs release. Lab releases provide access to early development
versions.

The Lab release consists of two parts. A special version of MySQL 5.7 and the HTTP Plugin itself. The
plugin can be loaded into the special version of MySQL 5.7 that comes with the plugin only. Only this
patched MySQL server provides the internal plugin APIs required.

3.1 Plugin Installation
Follow the standard MySQL server binary installation instructions to install the server. Load the plugin into
the MySQL Server. Use SHOW PLUGINS to check if it has been loaded by MySQL.

mysql> INSTALL PLUGIN myhttp SONAME 'libmyhttp.so'
mysql> SHOW PLUGINS
...
mysql> SELECT * FROM INFORMATION_SCHEMA.PLUGINS WHERE PLUGIN_NAME='myhttp'\G
*************************** 1. row ***************************
PLUGIN_NAME: myhttp
PLUGIN_VERSION: 1.0
PLUGIN_STATUS: ACTIVE
PLUGIN_TYPE: DAEMON
PLUGIN_TYPE_VERSION: 50705.0
PLUGIN_LIBRARY: libmyhttp.so
PLUGIN_LIBRARY_VERSION: 1.5
PLUGIN_AUTHOR: Andrey Hristov, Ulf Wendel
PLUGIN_DESCRIPTION: HTTP Plugin for MySQL
PLUGIN_LICENSE: GPL
LOAD_OPTION: ON
1 row in set (0,09 sec)

After installation, the plugin will immediately start listening for HTTP client requests and begin handling
them. The default HTTP listening port is 8080. By default, HTTP basic authentication is used to secure
accesses. The default HTTP basic authentication username is basic_auth_user and the passwort is
basic_auth_passwd. You can issue a corresponding HTTP request to verify the HTTP server is running.

shell> curl --user basic_auth_user:basic_auth_passwd --url "http://127.0.0.1:8080/"

{
 "error": 404,
 "message": "Not Found"
}

3.2 Example setup and data
Most examples given in the manual assume some non-default settings. For example, the SQL user
used by the examples is not created during a standard MySQL server installation. The user used for the
examples will be granted access to the example database myhttp only. This is done to reduce the risk of
accidentially exposing sensitive data through the HTTP interface.

Example setup and data

8

The following variables should be added to the MySQL servers configuration file in the section mysqld.
The listing shows all server variables available to configure the HTTP plugin.

#
Default database, if no database given in URL
#
myhttp_default_db = myhttp

#
Non-SSL default MySQL SQL user
#
myhttp_default_mysql_user_name = http_sql_user
myhttp_default_mysql_user_passwd = sql_secret
myhttp_default_mysql_user_host = 127.0.0.1

Change only, if need be to run the examples!
#
General settings
#
myhttp_http_enabled = 1
myhttp_http_port = 8080
myhttp_crud_url_prefix = /crud/
myhttp_document_url_prefix = /doc/
myhttp_sql_url_prefix = /sql/
#
Non-SSL HTTP basic authentication
#
myhttp_basic_auth_user_name = basic_auth_user
myhttp_basic_auth_user_passwd = basic_auth_passwd
#
SSL
#
myhttp_https_enabled = 1
myhttp_https_port = 8081
myhttp_https_ssl_key = /path/to/mysql/lib/plugin/myhttp_sslkey.pem

Change the plugins server variables defaults for myhttp_default_db to myhttp. This is the name of
the database (schema) that will be accessed, if no database name can be derived from the URL. The
database myhttp will be created in the next step.

Set the default MySQL user for non-SSL connections with myhttp_default_mysql_user_name,
myhttp_default_mysql_user_passwd and myhttp_default_mysql_user_host. All HTTP
connections not using SSL and causing any SQL to be executed will use this MySQL user in. The user
gets created in the next step and is given access to the myhttp database only.

The variables that are commented out do not need to be set unless, your setup requires changes. If,
for example, you have already a network server bound to port 8080, then instruct the plugin to bind to a
different port. After you have made the necessary changes, restart the MySQL server to make the changes
take effect.

Create a test database with the name myhttp. Make sure the name matches the server variable
myhttp_default_db.

DROP DATABASE IF EXISTS `myhttp`;
CREATE DATABASE `myhttp`;

Use the MySQL prompt to create the follwing tables and to insert some data into them. The tables will be
queried by the examples in the manual.

Example setup and data

9

USE `myhttp`;
CREATE TABLE `simple` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `col_a` varchar(255) DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
INSERT INTO `simple` VALUES (1,'Hello'),(2,' '),(3,'world!');
CREATE TABLE `sql_types` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `col_char` char(127) NOT NULL,
 `col_null` char(1) DEFAULT NULL,
 `col_date` date NOT NULL,
 `col_decimal` decimal(5,2) NOT NULL,
 `col_float` float NOT NULL,
 `col_bigint` bigint(20) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
INSERT INTO `sql_types` VALUES (1,'CHAR(127)',NULL,'2014-08-21',
 123.45,0.9999,9223372036854775807);
INSERT INTO `sql_types` VALUES (2,'CHAR(127)',NULL,'2014-08-22',
 678, -1.11,-9223372036854775800);
CREATE TABLE `dojo_jsonp` (
 `modified` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 `version` int(10) unsigned DEFAULT '1',
 `dojo_blob` blob,
 `dojo_id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (`dojo_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
INSERT INTO `dojo_jsonp` VALUES ('2014-08-22 07:11:43',1,'{\"first_name\": \"Ulf\",
 \"last_name\": \"Wendel\", \"email\": \"ulf.wendel@example.com\"}',1),
 ('2014-08-22 07:12:04',1,'{\"first_name\": \"Andrey\", \"last_name\": \"Hristov\",
 \"email\": \"andrey.hristov@example.com\"}',2);
CREATE TABLE `dojo_jsonp_fields` (
`first_name` varchar(255) DEFAULT NULL,
`last_name` varchar(255) DEFAULT '',
`email` varchar(255) DEFAULT '',
`modified` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
`version` int(10) unsigned DEFAULT '1',
`dojo_id` int(10) unsigned NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`dojo_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
INSERT INTO `dojo_jsonp_fields` VALUES ('Andrey','Hristov',
 'andrey.hristov@example.com','2014-08-22 07:27:23',1,1);
INSERT INTO `dojo_jsonp_fields` VALUES ('Ulf','Wendel',
 'ulf.wendel@example.com','2014-08-22 07:30:37',1,2);
CREATE TABLE `no_primary_key` (
 `id` int(11) NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
INSERT INTO `no_primary_key` VALUES (1),(2),(3);
CREATE TABLE `compound_primary_key` (
 `col_a` int(11) NOT NULL,
 `col_b` int(11) NOT NULL,
 PRIMARY KEY (`col_a`,`col_b`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
INSERT INTO `compound_primary_key` VALUES (1,1),(1,2),(1,3),(2,1);

Create the default SQL user of the HTTP plugin. The users password must be set using the servers
mysql_native_password authentication plugin. No other authentication plugins are supported. The
mysql_native_password is the default authentication plugin used by MySQL 5.7. To avoid any pitfalls
with non-standard default server settings, the full SQL syntax is used to set the users password. Grant the
user access to the myhttp database. Most examples use that database only.

CREATE USER 'http_sql_user'@'127.0.0.1' IDENTIFIED WITH mysql_native_password;
SET old_passwords = 0;
SET PASSWORD FOR 'http_sql_user'@'127.0.0.1' = PASSWORD('sql_secret');

Example setup and data

10

GRANT ALL ON myhttp.* TO 'http_sql_user'@'127.0.0.1';

With the settings in place and the SQL objects created, verify the correctness of the setup. Execute
SELECT * FROM simple on database myhttp through the sql/ HTTP endpoint. Use a HTTP client to
sent a HTTP 1.1 GET request for /sql/myhttp/SELECT+%2A+FROM+simple to the plugin listening to
port 8080 on host 127.0.0.1. Let the HTTP client authenticate itself through HTTP basic authentication
using the username basic_auth_user and basic_auth_passwd. A convenient way of providing
basic authentication information to the HTTP server is adding the credentials to the requested URL.
You can use curl or a web browser sent the appropriate GET request by fetching the URL http://
basic_auth_user:basic_auth_passwd@127.0.0.1:8080/sql/myhttp/SELECT+%2A+FROM
+simple. Upon success, the HTTP plugin replies with the query result in JSON format.

shell> curl --user basic_auth_user:basic_auth_passwd
 --url "http://127.0.0.1:8080/sql/myhttp/SELECT+%2A+FROM+simple"

[
 {
 "meta": [
 {
 "type": 3,
 "catalog": "def",
 "database": "myhttp",
 "table": "simple",
 "org_table": "simple",
 "column": "id",
 "org_column": "id",
 "charset": 63,
 "length": 11,
 "flags": 16899,
 "decimals": 0
 },
 {
 "type": 253,
 "catalog": "def",
 "database": "myhttp",
 "table": "simple",
 "org_table": "simple",
 "column": "col_a",
 "org_column": "col_a",
 "charset": 33,
 "length": 765,
 "flags": 0,
 "decimals": 0
 }
],
 "data": [
 [
 "1",
 "Hello"
],
 [
 "2",
 " "
],
 [
 "3",
 "world!"
]
],
 "status": [
 {
 "server_status": 34,
 "warning_count": 0

Configuration server variables

11

 }
]
 }
]

3.3 Configuration server variables
The plugin is configured through server variables. The following variables exist.

mysql> SHOW VARIABLES LIKE 'myhttp%'

+----------------------------------+------------------------------+
| Variable_name | Value |
+----------------------------------+------------------------------+
myhttp_basic_auth_user_name	basic_auth_user
myhttp_basic_auth_user_passwd	basic_auth_passwd
myhttp_crud_url_prefix	/crud/
myhttp_default_db	myhttp
myhttp_default_mysql_user_host	localhost
myhttp_default_mysql_user_name	http_sql_user
myhttp_default_mysql_user_passwd	sql_secret
myhttp_document_url_prefix	/doc/
myhttp_http_enabled	ON
myhttp_http_port	8080
myhttp_https_enabled	OFF
myhttp_https_port	8081
myhttp_https_ssl_key_file	lib/plugin/myhttp_sslkey.pem
myhttp_sql_url_prefix	/sql/
+----------------------------------+------------------------------+
14 rows in set (0,03 sec)

Name Cmd-
Line

Option
file

System
Var

Var
Scope

Dynamic

myhttp_basic_auth_user_name Yes Yes Yes Global No

myhttp_basic_auth_user_passwd Yes Yes Yes Global No

myhttp_default_db Yes Yes Yes Global No

myhttp_default_mysql_user_host Yes Yes Yes Global No

myhttp_default_mysql_user_name Yes Yes Yes Global No

myhttp_default_mysql_user_passwd Yes Yes Yes Global No

myhttp_http_enabled Yes Yes Yes Global No

myhttp_http_port Yes Yes Yes Global No

myhttp_https_enabled Yes Yes Yes Global No

myhttp_https_port Yes Yes Yes Global No

myhttp_https_ssl_key_file Yes Yes Yes Global No

myhttp_sql_url_prefix Yes Yes Yes Global No

myhttp_crud_url_prefix Yes Yes Yes Global No

myhttp_basic_auth_user_name

What Description

Introduced 1.0

myhttp_basic_auth_user_passwd

12

What Description

Enpoints all

System Variable Name myhttp_basic_auth_user_name

Variable Scope Global

Dynamic Variable No

Type string

Default basic_auth_user

Login user name for HTTP basic authentication. Basic authentication cannot be disabled by configuring an
empty user name.

Please note, clients can provide the HTTP basic authentication user name and passwort as part of the
URL. This bares the risk of exposing user credentials in log files of any system involved in the processing
of the HTTP request. If user credentials are encoded in the URL, they may appear in a clients browser
history or the log files of a proxy server operating between the client and the server.

myhttp_basic_auth_user_passwd

What Description

Introduced 1.0

Endpoints all

System Variable Name myhttp_basic_auth_user_passwd

Variable Scope Global

Dynamic Variable No

Type string

Default basic_auth_passwd

Login user password for HTTP basic authentication.

myhttp_default_db

What Description

Introduced 1.0

Enpoints all

System Variable Name myhttp_default_db

Variable Scope Global

Dynamic Variable No

Type string

Default test

Default database/schema to use if no other selected.

myhttp_default_mysql_user_host

What Description

Introduced 1.0

myhttp_default_mysql_user_user

13

What Description

Enpoints all

System Variable Name myhttp_default_mysql_user_host

Variable Scope Global

Dynamic Variable No

Type string

Default 127.0.0.1

SQL account used to perform SQL queries for non-SSL connections. This SQL account determines the
SQL access permissions of the HTTP interface user. The MySQL SQL account used is described with
the three variables: myhttp_default_mysql_user_host, myhttp_default_mysql_user_user,
myhttp_default_mysql_user_passwd.

The login process for the HTTP Plugin is two-staged. The procedure used for SSL and non-SSL
connections differ. For a non-SSL connection, the client first uses HTTP Basic Authentication to
authenticate itself against the HTTP Plugin. The HTTP Basic Authentication credentials are set through
myhttp_basic_auth_user_name, myhttp_basic_auth_user_passwd. Then, after successful HTTP
Basic Authentication, the HTTP Plugin executes SQL as the user set.

Standard MySQL Client/Server Protocol connections evaluate the clients host. The HTTP Plugin does not
considered the host of the requesting client. Instead, the variable value is used.

myhttp_default_mysql_user_user

What Description

Introduced 1.0

Enpoints all

System Variable Name myhttp_default_mysql_user_user

Variable Scope Global

Dynamic Variable No

Type string

Default root

Please, see also myhttp_default_mysql_user_host.

myhttp_default_mysql_user_passwd

What Description

Introduced 1.0

Enpoints all

System Variable Name myhttp_default_mysql_user_passwd

Variable Scope Global

Dynamic Variable No

Type string

Default

myhttp_http_enabled

14

Please, see also myhttp_default_mysql_user_host.

myhttp_http_enabled

What Description

Introduced 1.0

Enpoints all

System Variable Name myhttp_http_enabled

Variable Scope Global

Dynamic Variable No

Type boolean

Default ON

Whether to enable listening for client requests on an HTTP port. Please, see also:
myhttp_https_enabled.

myhttp_http_port

What Description

Introduced 1.0

Enpoints all

System Variable Name myhttp_http_port

Variable Scope Global

Dynamic Variable No

Type Numeric

Default 8080

Range 1 . . 65535

Network port to listen on for HTTP requests.

myhttp_https_enabled

What Description

Introduced 1.0

Enpoints all

System Variable Name myhttp_https_enabled

Variable Scope Global

Dynamic Variable No

Type boolean

Default ON

Please note, the Lab release does not include SSL support for packaging reasons. SSL support is currently
only available when using OpenSSL. This release does not include OpenSSL support.

Whether to enable listening for client requests on an HTTPS (SSL) port. Requires
myhttp_https_ssl_key_file to be set properly. Please, see also: myhttp_http_enabled..

myhttp_https_port

15

myhttp_https_port

What Description

Introduced 1.0

Enpoints all

System Variable Name myhttp_https_port

Variable Scope Global

Dynamic Variable No

Type Numeric

Default 8081

Range 1 . . 65535

Network port to listen on for HTTPS (SSL) requests.

myhttp_https_ssl_key_file

What Description

Introduced 1.0

Enpoints all

System Variable Name myhttp_https_ssl_key_file

Variable Scope Global

Dynamic Variable No

Type String

Default lib/plugin/myhttp_sslkey.pem

SSL key file to use for HTTPS (SSL) connections.

myhttp_sql_url_prefix

What Description

Introduced 1.0

Enpoints sql

System Variable Name myhttp_sql_url_prefix

Variable Scope Global

Dynamic Variable No

Type String

Default /sql/

URL prefix used for SQL endpoint (user API).

myhttp_crud_url_prefix

What Description

Introduced 1.0

myhttp_document_url_prefix

16

What Description

Enpoints crud

System Variable Name myhttp_crud_url_prefix

Variable Scope Global

Dynamic Variable No

Type String

Default /crud/

URL prefix of the CRUD (Create-Read-Update-Delete) endpoint.

myhttp_document_url_prefix

What Description

Introduced 1.0

Enpoints Document

System Variable Name myhttp_document_url_prefix

Variable Scope Global

Dynamic Variable No

Type String

Default /doc/

URL prefix of the JSON Document (DOC) endpoint.

17

Chapter 4 User APIs (endpoints)

Table of Contents
4.1 Feature comparison .. 17
4.2 Common properties .. 18
4.3 The SQL endpoint: /sql/ .. 19

4.3.1 API overview ... 20
4.3.2 HTTP methods, headers and status codes .. 22
4.3.3 JSON with padding (JSONP) .. 25
4.3.4 JSON content formats .. 26
4.3.5 JavaScript examples: basics, jQuery, Dojo .. 37
4.3.6 Limitations and pitfalls .. 53

4.4 The CRUD endpoint: /crud/ ... 53
4.4.1 API overview ... 54
4.4.2 HTTP methods, headers and status codes .. 55
4.4.3 JSON with padding (JSONP) .. 57
4.4.4 JSON content formats .. 58
4.4.5 JSON result document ... 59
4.4.6 JSON error document .. 59
4.4.7 JSON status document .. 60
4.4.8 Commandline examples ... 61
4.4.9 JavaScript examples: basics, AngularJS ... 65

4.5 The JSON document (DOC) endpoint: /doc/ ... 68
4.5.1 API overview ... 68
4.5.2 HTTP methods, headers and status codes .. 70
4.5.3 JSON content formats .. 81
4.5.4 JSON result document ... 82
4.5.5 JSON error document .. 83
4.5.6 JSON info document .. 83
4.5.7 JSON UUIDs document ... 84

The HTTP plugin offers three HTTP endpoints, implementing thee different user APIs. The endpoints serve
different use cases, offer different advantages and disadvantages. The following table gives an overview.

4.1 Feature comparison

Feature Endpoint Endpoint Endpoint

Endpoint Name SQL CRUD JSON Document

URL prefix http[s]://server:port/sql/ http[s]://server:port/crud/ http[s]://server:port/doc/

Query capabilities Rich: full power of SQL Limited: primary key
based CRUD (Create-
Read-Update-Delete) to
SQL tables

Limited: primary key
based CRUD for JSON
documents in SQL tables

Direct SQL Yes No No

HTTP methods GET GET, PUT, DELETE GET, PUT, DELETE

Transactions Yes, autocommit Yes, autocommit Yes, autocommit

Charsets utf8 only utf8 only utf8 only

Common properties

18

Feature Endpoint Endpoint Endpoint

Resultset meta data Yes, full MySQL meta
data

No No. Plugin managed
document revisions for
optimistic locking.

HTTP Basic Auth Yes Yes Yes

The SQL endpoint is the most powerful. It allows executing SQL over HTTP(S). Almost all queries
a standard MySQL Connector can run over the MySQL Client/Server Protocol, can also be run over
HTTP. A standard client connects to MySQL using the properitary, binary MySQL Protocol. The MySQL
Client/Server Protocol is stateful and supports the concept of a session. A client connects, establishes a
connection state and runs one or more commands before it disconnects. HTTP is stateless. There is no
concept of a session. SQL features that require a session are not available with the HTTP SQL endpoint.
Examples of such SQL features are transactions consisting of more than one command or prepared
statements. Note, however, that the autocommit mode can be used. When using autocommit, a transaction
consists of one command only.

To match the functionality of a standard client, the SQL endpoint is the only one to return full result set
meta data. The result set meta data contains information such as the MySQL data types of results. Other
endpoints skip this information for brevity.

The SQL endpoint is particularily useful for JavaScript clients that need the full power of SQL, or in
environments where a firewall prevents the use of the properitary MySQL Client/Server Protocol and
standard MySQL Connectors.

A simple primary key based access to SQL tables is offered by the CRUD (Create-Read-Update-Delete)
endpoint. The CRUD endpoint is RESTful in the sense that rows are created using the HTTP PUT method,
read using GET, updated with PUT and removed using the HTTP DELETE method. The query capabilities
are limited to basic key value semantics. Results are returned as flat JSON documents. Results do not
include result set meta data.

The CRUD interface can be used for simplistic spreadsheets where users search by primary key only.
It may also be of use in heterogenous environments where databases are only used as a secure
intermediate storage platform for data exchange. The availability of a simple to use API combined with
a protocol that is allowed by many firewalls, may outweight the additional power offered by a standard
MySQL client. An example of such an environment is a publishing house that manages articles in various
systems and exports them to MySQL. Then, various online systems transform the articles and fill caches
and webservers to publish them.

The document endpoint bends MySQL towards the key document data model. Similar to the CRUD
endpoint accesses are mapped to tables based on their primary keys. The tables have a BLOB column
that holds the document. The value stored in the BLOB column is assumed to be a valid JSON document.
The document is not constrained in any way but that it must fit the SQL column type used to store it.

This endpoint emulates a key document store using MySQL and HTTP. Key document models are great if
the documents structure changes frequently and thus cannot be easily mapped to a fixed, predefined set of
columns. Documents offer a level schema flexibility that MySQL otherwise cannot achieve.

Furthermore documents form logical entities that qualify for sharding. An application using the key
document model likely runs the majority of queries on individual documents only. Thus, distributed queries,
which are expensive in any distributed database, are avoided.

4.2 Common properties

All endpoints share the following common properties and limitations.

The SQL endpoint: /sql/

19

• HTTP is a stateless protocol. The protocol does not include the concept of a session. None of the
endpoints tries to overcome this property.

• Other charsets but UTF-8 are not supported. All results are encoded using UTF-8 (utf8_general_ci).
Characters outside of the printable ASCII range or requiring multi-byte encoding may be returned using
JSON \uHEX notation.

Due to the escaping and resulting growth in content lengths, none of the SQL endpoints is ideal for
handing binary data.

• Authentication and authorization pattern are independent of the SQL endpoint. All endpoints follow the
same logic. All offer the same features.

• Endpoints are addressed with an URL prefix. The URL prefix is always followed by the name
of the default database to use used. The URL pattern always begins with: http[s]://
host:port/endpoint_prefix/default_database/. The pattern then continues with
endpoint specific elements: http[s]://host:port/endpoint_prefix/default_database/
endpoint_specific_part. The default_database is a mandatory element in the URL pattern
of any endpoint. However, it is valid to use an empty string for the default database, for example,
http://127.0.0.1:8080/sql//SELECT+DATABSE() is a valid URL of the SQL endpoint. If an
emptry string is given, the plugin defaults to using the default database specified with the server variable
myhttp_default_db.

4.3 The SQL endpoint: /sql/
The sql endpoint executes SQL statements "as-is". Arbitrary SQL commands are accepted by the
endpoint. SQL commands are not validated or sanitized in any way. Therefore, database administrators
should restrict access to this endpoint. Restricting access is good practice for any kind of clients using any
protocol.

Most SQL statements that can be executed using a standard MySQL client can also be executed through
the HTTP Plugins SQL endpoint. The use of the HTTP protocol causes some limitations. Below is a list of
supported statements. The list may not be complete:

• SELECT

• Assorted CREATE, for example but not only, CREATE TABLE

• UPDATE, REPLACE, INSERT, DELETE

• CALL for functions and procedures. Including procedures that return multiple result sets.

• Specialized statements such as: DO, HANDLER.

• Administrative statements such as: CREATE USER.

HTTP is a stateless protocol. The protocol does not include the concept of a session. A SQL feature that
requires session semantics cannot be used with the SQL endpoint. Corresponding SQL statements are not
blocked. Their execution has the same effect as connecting to MySQL using a standard client, running a
single SQL statement and disconnecting.

Some MySQL specific features also need a stateful message exchange between the client and the server.
Because the SQL endpoint follows the stateless nature of HTTP and offers no session concept, they
cannot be used either:

• SQL transactions with more than one command cannot be used because there is no way to send a
sequence of commands using multiple HTTP requests. All SQL is executed in autocommit mode.

API overview

20

• The SET command can be used but you should use it for global settings only. Using it for the current
session is questionable because the session ends with the execution of the SET command. For example,
when you use the SQL endpoint to set a SQL session variable with SET @myvar='hello', you will not
be able to access the variable from the next HTTP request.

• The HTTP SQL endpoint does not support prepared statements. Prepared statements prepare a
statement once, then allow multiple executions. For this, a client sends a statement to the server to be
prepared. The server replies with a handle for the prepared statement. Then, the client sends parameter
values for bound parameters, if any, before the statement gets executed. This prepared statement
protocol requires session support, which is not available.

The HTTP Plugin does not block the SQL syntax for prepared statement. It is possible to prepare
a statement using PREPARE. But because the SQL endpoint lets you run only one command per
HTTP request and the SQL session ends with the HTTP request, the prepared statement will not be
accessible. A prepared statement created in one session is not available to other sessions.

• Most MySQL authentication plugins use a multi-message handshake protocol and cannot be
used therefore. MySQL users used with the SQL plugin must be created using the MySQL native
authentication plugin.

The above lists do not aim to be complete.

Other charsets but UTF-8 are not supported. All results are encoded using UTF-8 (utf8_general_ci).
Characters outside of the printable ASCII range or requiring multi-byte encoding may be returned using
JSON \uHEX notation.

Results include meta data information. Unlike some other interfaces, the HTTP SQL endpoint does not
align or convert meta data information provided by the server. Here, the SQL endpoint behaves similar to
the MySQL C API. Both interfaces provide the user with raw data from the server. It is then up to the user,
for example, to handle differences between server versions, if any. Given that the plugin supports MySQL
5.7 only this should be no issue.

4.3.1 API overview

The SQL endpoint handles all HTTP(S) GET requests on the listening port and host of the HTTP
Plugin with the URL prefix matching the server variable myhttp_sql_url_prefix. For example,
when using server variable defaults, the SQL endpoint listens to all HTTP requests with an URL that
begins with http://127.0.0.1:8080/sql/ respectively https://127.0.0.1:8081/sql/
for SSL requests. The full URL pattern for requests is protocol://host:port/sql/database/
statement_to_execute (assuming myhttp_sql_url_prefix = /sql/). Only HTTP GET method
requests following this pattern are understood and allowed.

The default database for SQL command execution is encoded in the URL: protocol://host:port/
sql/database/. The database part is mandatory. It cannot be omitted but it is valid to pass an
empty string: protocol://host:port/sql//. If an empty string is given, the server variable
myhttp_default_db determines the default database. For example, http://127.0.0.1:8080/
sql/tests/ sets the default database to test. Whereas the URL https://127.0.0.1:8081/sql//
contains an empty database and defaults to myhttp_default_db.

The SQL command to be executed is encoded in the URL of a GET request. To run a SQL command,
URL encode the command and append it to the URL prefix of the sql endpoint. Assuming default settings,
given the URL prefix http://127.0.0.1:8080/sql/database/ and the SQL command SELECT
1, the resulting URL for query execution by the SQL endpoint is http://127.0.0.1:8080/sql/
database/SELECT+1. Issuing a HTTP request for that URL will give a reply similar to:

API overview

21

shell> curl --user basic_auth_user:basic_auth_passwd
 --url "http://127.0.0.1:8080/sql/myhttp/SELECT+1"

[
{
"meta":[
 {"type":8,"catalog":"def","database":"","table":"","org_table":"",
 "column":"1","org_column":"","charset":63,"length":1,
 "flags":129,"decimals":0}
],
"data":[
 ["1"]
],
"status":[{"server_status":2,"warning_count":0}]
}
]

Please note, no pretty printing is done by the HTTP plugin. In the following the manual may make use of a
pretty printer to improve readability.

It is not an error that the database meta data entry reports an empty string. This is the very same meta
data that a standard client gets when executing the same statement. Should you have setup the example
database, query the simple table from the database myhttp for an example returning multiple rows:

shell> curl --user basic_auth_user:basic_auth_passwd
 --url "http://127.0.0.1:8080/sql//SELECT+%2A+FROM+simple+ORDER+BY+id"

[
 {
 "meta": [
 {
 "type": 3,
 "catalog": "def",
 "database": "myhttp",
 "table": "simple",
 "org_table": "simple",
 "column": "id",
 "org_column": "id",
 "charset": 63,
 "length": 11,
 "flags": 16899,
 "decimals": 0
 },
 {
 "type": 253,
 "catalog": "def",
 "database": "myhttp",
 "table": "simple",
 "org_table": "simple",
 "column": "col_a",
 "org_column": "col_a",
 "charset": 33,
 "length": 765,
 "flags": 0,
 "decimals": 0
 }
],
 "data": [
 [
 "1",
 "Hello"
],
 [

HTTP methods, headers and status codes

22

 "2",
 " "
],
 [
 "3",
 "world!"
]
],
 "status": [
 {
 "server_status": 2,
 "warning_count": 0
 }
]
 }
]

4.3.2 HTTP methods, headers and status codes

The SQL endpoint supports HTTP GET requests only. Other HTTP methods but GET are not allowed. The
following HTTP headers are set for all HTTP GET replies.

Header Description

Server Always given. Can be considered as an API version. For example: MyHTTP
1.0.0-alpha

Cache-control Always given. Always must-revalidate

Pragma Always given. Always no-cache

Content-Length Always given.

Content-Type Set to application/json for 200 OK, 400 Bad Request, 401
Unauthorized. Other replies may or may not contain it.

Connection Always given. Always Keep-Alive.

Other HTTP methods but GET are not supported. The plugins replies to all other methods but GET by
sending an empty reply with code 405 Method Not Allowed.

shell> curl -v --request PATCH --user basic_auth_user:basic_auth_passwd
 --url "http://127.0.0.1:8080/sql/myhttp/"

[...]
* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)
* Server auth using Basic with user 'basic_auth_user'
> PATCH /sql/myhttp/ HTTP/1.1
> Authorization: Basic YmFzaWNfYXV0aF91c2VyOmJhc2ljX2F1dGhfcGFzc3dk
> User-Agent: curl/7.32.0
> Host: 127.0.0.1:8080
> Accept: */*
>
< HTTP/1.1 405 Method Not Allowed
< Connection: Keep-Alive
< Cache-control: must-revalidate
< Server: MyHTTP 1.0.0-alpha
< Content-Length: 0
< Pragma: no-cache

Successful HTTP GET requests return status code 200 OK.

HTTP methods, headers and status codes

23

shell> curl -v --user basic_auth_user:basic_auth_passwd
 --url "http://127.0.0.1:8080/sql/myhttp/SELECT+%27Good+old+SQL%27"

[...]
< HTTP/1.1 200 OK
< Connection: Keep-Alive
< Cache-control: must-revalidate
* Server MyHTTP 1.0.0-alpha is not blacklisted
< Server: MyHTTP 1.0.0-alpha
< Content-Length: 258
< Pragma: no-cache
< Content-Type: application/json
[
 {
 "meta": [
 {
 "type": 253,
 "catalog": "def",
 "database": "",
 "table": "",
 "org_table": "",
 "column": "Good old SQL",
 "org_column": "",
 "charset": 33,
 "length": 36,
 "flags": 1,
 "decimals": 31
 }
],
 "data": [
 [
 "Good old SQL"
]
],
 "status": [
 {
 "server_status": 2,
 "warning_count": 0
 }
]
 }
]

Unsuccessful requests, for example, failed SQL commands, return 400 Bad Request.

shell> curl -v --user basic_auth_user:basic_auth_passwd
 --url "http://127.0.0.1:8080/sql/myhttp/NoSQL"

[...]
> GET /sql/myhttp/NoSQL HTTP/1.1
> Authorization: Basic YmFzaWNfYXV0aF91c2VyOmJhc2ljX2F1dGhfcGFzc3dk
> User-Agent: curl/7.32.0
> Host: 127.0.0.1:8080
> Accept: */*
>
< HTTP/1.1 400 Bad Request
< Connection: Keep-Alive
< Cache-control: must-revalidate
< Server: MyHTTP 1.0.0-alpha
< Content-Length: 195
< Pragma: no-cache
< Content-Type: application/json
<
{

HTTP methods, headers and status codes

24

 "errno": 1064,
 "sqlstate": "42000",
 "error": "You have an error in your SQL syntax; check the manual that
 corresponds to your MySQL server version for the right syntax to use
 near 'NoSQL' at line 1"
}

If HTTP Basic Authentication fails, 401 Unauthorized is sent.

shell> curl -v --url "http://wrong:user@127.0.0.1:8080/sql/myhttp/"

[...]
* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)
* Server auth using Basic with user 'wrong'
> GET /sql/myhttp/ HTTP/1.1
> Authorization: Basic d3Jvbmc6dXNlcg==
> User-Agent: curl/7.32.0
> Host: 127.0.0.1:8080
> Accept: */*
>
< HTTP/1.1 401 Unauthorized
< Connection: Keep-Alive
< Cache-control: must-revalidate
< Server: MyHTTP 1.0.0-alpha
< Content-Length: 61
< WWW-Authenticate: Basic realm="MySQL HTTP Server"
< Pragma: no-cache
< Content-Type: application/json
<
{
 "errno": 1045,
 "sqlstate": "28000",
 "error": "401 Unauthorized"
}

You should follow the rules for valid requests. Invalid requests may cause replies with no content or
content that is not JSON. Applications should check the returned HTTP headers before attempting to parse
a reply as JSON. Consumers should only attempt parsing if the HTTP reply code is 200, 400 or 401, the
HTTP header Content-Type: application/json is set and a correct Content-Length is given.
Below is an example of an HTTP request that is not understood by the SQL endpoint. Please note, that the
Content-Type header is omitted for the code 404 reply.

shell> telnet 127.0.0.1 8080

Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
GET jdsjsdjd HTTP/1.1

HTTP/1.1 404 Not Found
Connection: Keep-Alive
Cache-control: must-revalidate
Server: MyHTTP 1.0.0-alpha
Content-Length: 36
Pragma: no-cache

{
 "error": 404,
 "message": "Not Found"
}

JSON with padding (JSONP)

25

The HTTP Plugin may even reply with no JSON content at all to other requests it does not understand.
This is a known limitation.

4.3.3 JSON with padding (JSONP)

JSON with padding (JSONP) is supported to overcome the same origin policy restriction of JavaScript
scripts run in a Browser. Please see, Wikipedia or the JavaScript examples given below for an explanation
of the JSONP concept.

Parameter Description

jsonp=<callback> Enables JSON with padding. The parameters value is used as the callback
function name. Replies returned from the plugin change from reply to
callback(reply).

jsonp_escape Only considered when jsonp is also given. Replies returned from the plugin
change from reply to callback("reply") with reply being escaped
appropriately.

Add a jsonp parameter to the request URL for JSONP formatting. The jsonp parameter value is the
function name used in JSONP formatting. For example, to get a JSONP formatted result to invoke the
JavaScript callback myfunction for the SQL command SELECT col_a FROM simple ORDER BY id
use http://basic_auth_user:basic_auth_passwd@127.0.0.1:8080/sql/myhttp/SELECT
+col_a+FROM+simple+ORDER+BY+id?jsonp=myfunction;

shell> curl --user basic_auth_user:basic_auth_passwd
 --url "http://127.0.0.1:8080/sql/myhttp/SELECT+col_a+FROM+simple+ORDER+BY+id?jsonp=myfunction"

myfunction([
{
"meta":[
 {"type":253,"catalog":"def","database":"myhttp","table":"simple",
 "org_table":"simple", "column":"col_a","org_column":"col_a","charset":33,
 "length":765,"flags":0,"decimals":0}
],
"data":[
 ["Hello"],
 [" "],
 ["world!"]
],
"status":[{"server_status":2,"warning_count":0}]
}
]);

By default, the HTTP plugin replies are passed as is to the callback function as an argument. This
approach can be used for all valid requests. The HTTP plugin will return valid JSON in response to well-
formed requests. JSON does not need to be passed as a string but can be passed as a JSON object to the
callback function.

In error situations it may happen that the HTTP does not return valid JSON. Then, the callback function
either gets no argument or an invalid JavaScript JSON object. To avoid problems with invalid replies, the
HTTP plugin can be instructed to pass its reply to the callback function as a string. When doing so, invalid
JSON does not cause an immediately parse error but can be handled gracefully.

To overcome problems with faulty replies and to serve JavaScript frameworks that expect strings instead of
JSON objects, the HTTP plugin can be instructed to escape the JSON reply as a string. The string is then
passed as the first and only argument to the callback function. Use of a string can be requested with the
HTTP parameter jsonp_escape. The jsonp_escape parameter value is not checked.

JSON content formats

26

shell> curl --user basic_auth_user:basic_auth_passwd
 --url "http://127.0.0.1:8080/sql/myhttp/SELECT+col_a+FROM+simple+WHERE+id+%3D+1?jsonp=myfunction&jsonp_escape=1"

myfunction("[
{
\"meta\":[
 {\"type\":253,\"catalog\":\"def\",\"database\":\"myhttp\",\"table\":\"simple\",
 \"org_table\":\"simple\",\"column\":\"col_a\",\"org_column\":\"col_a\",
 \"charset\":33,\"length\":765,\"flags\":0,\"decimals\":0}],
\"data\":[
 [\"Hello\"]
],
\"status\":[{\"server_status\":2,\"warning_count\":0}]
}
]");

4.3.4 JSON content formats

The HTTP plugins SQL endpoint either replies with no content or with a valid JSON document to valid user
requests. A JSON document shall be any JSON array or object that conforms to the syntax outlined in
ECMA-404. To our knowledge, the specifications of the JSON syntax found on json.org, from ECMA-262,
from RFC4627 and from RFC7159 agree on syntactic elements of the language.

No content is returned in reply to requests that use any HTTP method but GET. Valid HTTP GET requests
are replied to with an error document or a result set document.

All JSON replies are encoded as UTF-8. Special characters are encoded using JSONs \\u four-hex-
digits Unicode notation. Below is an example showing how the german umlauts äöüßÄÖÜ are escaped:

shell> curl --user basic_auth_user:basic_auth_passwd
 --url "http://127.0.0.1:8080/sql/myhttp/SELECT+%27German+umlauts%3A+%C3%A4%C3%B6%C3%BC%C3%9F%C3%84%C3%96%C3%9C%27+AS+_json_unicode_notation"

[
 {
 "meta": [
 {
 "type": 253,
 "catalog": "def",
 "database": "",
 "table": "",
 "org_table": "",
 "column": "_json_unicode_notation",
 "org_column": "",
 "charset": 33,
 "length": 69,
 "flags": 1,
 "decimals": 31
 }
],
 "data": [
 [
 "German umlauts: \u00e4\u00f6\u00fc\u00df\u00c4\u00d6\u00dc"
]
],
 "status": [
 {
 "server_status": 2,
 "warning_count": 0
 }
]
 }
]

JSON content formats

27

JSON with padding (JSONP) can be requested for all valid requests. The padding will be applied to both
kinds of replies that can occur: JSON result documents and JSON error documents.

REPLY:
 jsonp_function(answer) |
 answer

jsonp_function:
string

answer:
 result_sets |
 server_status |
 error

result_sets:
[
 result_set (, result_set ...)
 (, server_status)
]

The clients SQL statement and the HTTP code returned from the server can be used to determine the
expected kind of reply. The HTTP code 400 Bad Request may be followed by an error document. The
error document is not returned for successful requests and replies using the HTTP code 200 OK. The
content of an a 200 OK OK reply from the server shows one or more result documents. There is one result
document for each result set produced by the server. How many the server produces depends on the SQL
statement executed.

HTTP return code SQL statment executed Contents to expect

200 OK SELECT Result document without server status

200 OK INSERT or other data
manipulation statements.

Result document consisting of server status only

200 OK CREATE or other data
definitions statements.

Result document consisting of server status only

200 OK CALL or statements
producing multiple result
sets

List of result documents without server status
followed by server status

400 Bad Request Any Error document

401 Unauthorized Any Error document

4.3.4.1 JSON result document

Valid GET requests to run SQL statements that can return rows cause a JSON result set object to be
returned. The JSON result set object format is used regardless how many rows have been produced.

A result set object always has three top level members: meta, data and status. The meta member
holds an array of column meta data objects. Row data is listed in the data array. The status member
object contains server_status and warning_count.

result:
 result_sets |
 server_status |
 error

JSON content formats

28

result_sets:
[
 result_set (, result_set ...)
 (, server_status)
]

result_set:
{
 "meta" : [column_meta (, column_meta ...)],
 "data" : [data_row (, data_row ...)],
 "status" : [result_status (, result_status ...)]
}

column_meta:
{
 "type" : int,
 "catalog" : string,
 "database" : string,
 "table" : string,
 "org_table" : string,
 "column" : string,
 "org_column" : string,
 "charset": int,
 "length": int,
 "flags": int,
 "decimals": int
}

data_row:
[
 "column_value" (, "column_value" ...)
]

column_value:
 string |
 null

result_status:
{
 "server_status" : int,
 "warning_count" : int
}

server_status:
{
 "server_status" : int,
 "warning_count" : int,
 "affected_rows" : int,
 "last_insert_id" : int
}

A basic SELECT such as SELECT 1, 'two' FROM DUAL returns a JSON document holding an array
of resulset objects, assuming that the SQL execution does not fail. Because SELECT returns at most one
resultset, the list holds only one resultset object.

[
 {
 "meta": [
 {
 "type": 8,
 "catalog": "def",
 "database": "",
 "table": "",
 "org_table": "",
 "column": "1",

JSON content formats

29

 "org_column": "",
 "charset": 63,
 "length": 1,
 "flags": 129,
 "decimals": 0
 },
 {
 "type": 15,
 "catalog": "def",
 "database": "",
 "table": "",
 "org_table": "",
 "column": "two",
 "org_column": "",
 "charset": 83,
 "length": 9,
 "flags": 129,
 "decimals": 31
 }
],
 "data": [
 [
 "1",
 "two"
]
],
 "status": [
 {
 "server_status": 2,
 "warning_count": 0
 }
]
 }
]

For each row generated generated by the executed SQL commands, an array of column values is added
to the data member of the result set object. All SQL values but SQL NULL are serialized as JSON strings.
A SQL NULL is serialized as a JSON NULL. The conversion of any SQL type but NULL to string similar
to a behaviour that can also be observed with standard MySQL clients that use the MySQL client server
protocol. The MySQL Client/Server Protocol has two operational modes: the text protocol and the binary
protocol. Any non-prepared statement defaults to the text protocol. When the text protocol is used, the
server transfers all data as binary strings to the client. It is then the clients task to map the strings to native
datatypes. This is usually done by the MySQL driver used. Drivers base their conversion logic on local
domain rules and the meta data information the server provides.

The SQL endpoint of the HTTP plugin does not attempt to map SQL types to JSON types. The SQL type
system knows more scalar data types than the JSON type system. For example, a MySQL temporal
datatype such as DATE has no counterpart in the JSON type system. The scalar data types supported by
JSON are string, number, null, true and false. Because the HTTP plugin does not know anything
about the consumer of the JSON results and its requirements, no attempt is made to offer a more complex
type mapping.

shell> curl --user basic_auth_user:basic_auth_passwd
 --url "http://127.0.0.1:8080/sql/myhttp/SELECT+%2A+FROM+sql_types+ORDER+BY+id"

[
 {
 "meta": [
 {
 "type": 3,
 "catalog": "def",

JSON content formats

30

 "database": "myhttp",
 "table": "sql_types",
 "org_table": "sql_types",
 "column": "id",
 "org_column": "id",
 "charset": 63,
 "length": 11,
 "flags": 16899,
 "decimals": 0
 },
 {
 "type": 254,
 "catalog": "def",
 "database": "myhttp",
 "table": "sql_types",
 "org_table": "sql_types",
 "column": "col_char",
 "org_column": "col_char",
 "charset": 33,
 "length": 381,
 "flags": 4097,
 "decimals": 0
 },
 {
 "type": 254,
 "catalog": "def",
 "database": "myhttp",
 "table": "sql_types",
 "org_table": "sql_types",
 "column": "col_null",
 "org_column": "col_null",
 "charset": 33,
 "length": 3,
 "flags": 0,
 "decimals": 0
 },
 {
 "type": 10,
 "catalog": "def",
 "database": "myhttp",
 "table": "sql_types",
 "org_table": "sql_types",
 "column": "col_date",
 "org_column": "col_date",
 "charset": 63,
 "length": 10,
 "flags": 4225,
 "decimals": 0
 },
 {
 "type": 246,
 "catalog": "def",
 "database": "myhttp",
 "table": "sql_types",
 "org_table": "sql_types",
 "column": "col_decimal",
 "org_column": "col_decimal",
 "charset": 63,
 "length": 7,
 "flags": 4097,
 "decimals": 2
 },
 {
 "type": 4,
 "catalog": "def",
 "database": "myhttp",
 "table": "sql_types",

JSON content formats

31

 "org_table": "sql_types",
 "column": "col_float",
 "org_column": "col_float",
 "charset": 63,
 "length": 12,
 "flags": 4097,
 "decimals": 31
 },
 {
 "type": 8,
 "catalog": "def",
 "database": "myhttp",
 "table": "sql_types",
 "org_table": "sql_types",
 "column": "col_bigint",
 "org_column": "col_bigint",
 "charset": 63,
 "length": 20,
 "flags": 4097,
 "decimals": 0
 }
],
 "data": [
 [
 "1",
 "CHAR(127)",
 null,
 "2014-08-21",
 "123.45",
 "0.9999",
 "9223372036854775807"
],
 [
 "2",
 "CHAR(127)",
 null,
 "2014-08-22",
 "678.00",
 "-1.11",
 "-9223372036854775800"
]
],
 "status": [
 {
 "server_status": 2,
 "warning_count": 0
 }
]
 }
]

Each result_set object has three members: meta, data, status. The meta member contains a list of
metadata objects which describe the columns in the resulsets data rows. The metadata objects has entries
for all columns in the resultset. The column metadata entries order maps the resultset column order. The
first column metadata entry refers to the first column in the resultset and so forth.

The following list describes the members of the meta object. Many members correspond to elements of
the same name in the C-API data structure MYSQL_ROW.

• int type

JSON content formats

32

SQL data type. Please note, standard MySQL Clients can encapsulate the type numbers using type
constants. Encapsulation help whenever type numbers change. The HTTP Plugin Lab Release does
expose the type numbers without any encapsulation.

Type Description

0 MYSQL_TYPE_DECIMAL (DECIMAL or NUMERIC)

1 MYSQL_TYPE_TINY (TINYINT)

2 MYSQL_TYPE_SHORT (SMALLINT)

3 MYSQL_TYPE_LONG (INTEGER)

4 MYSQL_TYPE_FLOAT (FLOAT)

5 MYSQL_TYPE_DOUBLE (DOUBLE or REAL)

6 MYSQL_TYPE_NULL (NULL)

7 MYSQL_TYPE_TIMESTAMP (TIMESTAMP)

8 MYSQL_TYPE_LONGLONG (BIGINT)

9 MYSQL_TYPE_INT24 (MEDIUMINT)

10 MYSQL_TYPE_DATE (DATE)

11 MYSQL_TYPE_TIME (TIME)

12 MYSQL_TYPE_DATETIME (DATETIME)

13 MYSQL_TYPE_YEAR (YEAR)

14 MYSQL_TYPE_NEWDATE

15 MYSQL_TYPE_VARCHAR.This type is never reported. The MySQL
server converts it into 253/MYSQL_TYPE_VAR_STRING (VARCHAR
or VARBINARY) when a client is using the text variant of the MySQL
Client/Server protocol (COM_QUERY). This conversion happens inside
the server and normal clients using, for example, the C-API function
mysql_query() will never see type MYSQL_TYPE_VARCHAR. To make
testing of the plugin easier and to align behaviour of, the plugin does the
same conversion: 15/MYSQL_TYPE_VARCHAR is always reported as 253/
MYSQL_TYPE_VAR_STRING.

16 MYSQL_TYPE_BIT (BIT)

17 MYSQL_TYPE_TIMESTAMP2. This type should never be reported. It is used
in the server only. Please, report a bug if you can observe it.

18 MYSQL_TYPE_DATETIME2. This type should never be reported. It is used
in the server only. Please, report a bug if you can observe it.

19 MYSQL_TYPE_TIME2. This type should never be reported. It is used in the
server only. Please, report a bug if you can observe it.

246 MYSQL_TYPE_NEWDECIMAL (Precision math DECIMAL or NUMERIC)

247 MYSQL_TYPE_ENUM (ENUM)

248 MYSQL_TYPE_SET (SET)

249 MYSQL_TYPE_TINY_BLOB

250 MYSQL_TYPE_MEDIUM_BLOB

251 MYSQL_TYPE_LONG_BLOB

JSON content formats

33

Type Description

252 MYSQL_TYPE_BLOB (BLOB or TEXT)

253 MYSQL_TYPE_VAR_STRING (VARCHAR or VARBINARY).

254 MYSQL_TYPE_STRING (CHAR or BINARY)

255 MYSQL_TYPE_GEOMETRY (Spatial field)

• string catalog

The catalog name. This value is always "def".

• string database

The name of the database that the field comes from. Please, see the db description of the C-API
documentation for details.

• string table

The name of the table containing this field, if it isn't a calculated field. Please, see the C-API
documentation for details.

• string org_table

The name of the table. Please, see the C-API documentation for details.

• string column

The name of the field. If the field was given an alias with an AS clause, the value of column is the alias.
Please, see the C-API documentation (name) for details.

• string org_column

The name of the field. Aliases are ignored. Please, see the C-API documentation (org_name) for details.

• int charset

An ID number that indicates the character set/collation pair for the field. Please, see the C-API
documentation (charsetnr) for details.

• int length

The width of the field. This corresponds to the display length, in bytes. Please, see the C-API
documentation for details.

• int flags

Bit-flags that describe the field. The flags value may have zero or more of the bits set that are shown in
the following table. Please, see the C-API documentation for details.

• int decimals

The number of decimals for numeric fields, and (as of MySQL 5.6.4) the fractional seconds precision for
temporal fields.

The data member of the result_set is a list of the actual data rows returned. Each list entry is in turn an
array holding the column values for the row. All results are returned as strings. No attempt is made to map
SQL types to corresponding JSON data types.

JSON content formats

34

The number of SQL warnings caused by the SQL command that has generated a resultset is reported
through the status member of the result_set object. The status member is an object with two
members: server_status and warning_count.

• int server_status

• int warning_count

The number of SQL warnings caused by the SQL command.

Stored procedures can return more than one result set. An example of such a stored procedure is given
below.

CREATE PROCEDURE c_proc() BEGIN SELECT 1; SELECT 2; END

When executed using CALL, the sql endpoint returns a JSON document with a list of two resultset objects
followed by a server status object.

[
 {
 "meta": [
 {
 "type": 8,
 "catalog": "def",
 "database": "",
 "table": "",
 "org_table": "",
 "column": "1",
 "org_column": "",
 "charset": 63,
 "length": 1,
 "flags": 129,
 "decimals": 0
 }
],
 "data": [
 [
 "1"
]
],
 "status": [
 {
 "server_status": 10,
 "warning_count": 0
 }
]
 },
 {
 "meta": [
 {
 "type": 8,
 "catalog": "def",
 "database": "",
 "table": "",
 "org_table": "",
 "column": "2",
 "org_column": "",
 "charset": 63,
 "length": 1,
 "flags": 129,

JSON content formats

35

 "decimals": 0
 }
],
 "data": [
 [
 "2"
]
],
 "status": [
 {
 "server_status": 10,
 "warning_count": 0
 }
]
 },
 {
 "server_status": 2,
 "warning_count": 0,
 "affected_rows": 0,
 "last_insert_id": 0
 }
]

The server status object has four members: server_status, warning_count, affected_rows and
last_insert_id.

• int server_status

• int warning_count

Number of SQL warnings caused by the execution of the SQL statement.

• int affected_rows

Number of rows affected by the SQL statement. Please, see the C-API mysql_affected_rows() for
details.

• int last_insert_id

The ID generated for an AUTO_INCREMENT column by the previous query. Please, see the C-API
mysql_insert_id() for details.

A server status object is also sent in reply to data manipulation statements (DML) and data definition
statement (DDL). Examples for data manipulation statements are INSERT and UPDATE.

shell> curl --user basic_auth_user:basic_auth_passwd
 --url "http://127.0.0.1:8080/sql/myhttp/INSERT+INTO+simple%28col_a%29+VALUES+%28%27Yippie%27%29"

{
 "server_status": 2,
 "warning_count": 0,
 "affected_rows": 1,
 "last_insert_id": 5
}

CREATE TABLE, DROP TABLE, ALTER TABLE, CREATE INDEX are examples of data definition
statement. Below is the servers reply to the data definition statement DROP TABLE IF EXISTS
unknown.

JSON content formats

36

{
 "server_status": 2,
 "warning_count": 1,
 "affected_rows": 0,
 "last_insert_id": 0
}

4.3.4.2 JSON error document

In case of an error, the plugin returns a JSON error object.

error:
{
 "errno": int,
 "sqlstate" : string,
 "error": string
}

A JSON object describing and error will be returned in reply to failed SQL statements but may occur it
other contexts too. The JSON error document shall be expected when the HTTP return code is either 400
Bad Request or 401 Unauthorized.

shell> curl -v --user basic_auth_user:basic_auth_passwd
 --url "http://127.0.0.1:8080/sql/myhttp/Yet+another+error"

[...]
< HTTP/1.1 400 Bad Request
< Connection: Keep-Alive
< Cache-control: must-revalidate
< Server: MyHTTP 1.0.0-alpha
< Content-Length: 207
< Pragma: no-cache
< Content-Type: application/json
<
{
 "errno": 1064,
 "sqlstate": "42000",
 "error": "You have an error in your SQL syntax; check the manual that
 corresponds to your MySQL server version for the right syntax to
 use near 'Yet another error' at line 1"
}

The error object has the following members.

• int errno

An error code for the error. Errors also listed at Appendix C, Errors, Error Codes, and Common
Problems.

• string sqlstate

The SQL state code of the error.

• string error

An error description.

JavaScript examples: basics, jQuery, Dojo

37

4.3.5 JavaScript examples: basics, jQuery, Dojo

Various JavaScript usage examples are given in the docs/JavaScript directory contained in the source
tree. The examples show how to use query the HTTP sql endpoint using plain JavaScript run in a browser
and how to create a Dojo JavaScript framework data store for accessing MySQL.

4.3.5.1 Introduction and general notes

The following introduction applies to all endpoints and user APIs. It describes the different techniques
available to issue HTTP requests with JavaScript scripts run in a browser and common beginners pitfalls.

Most browsers execute JavaScript programs in a sandbox. A sandbox is a secured environment that
forbids potentially insecure actions. For example, local file system accesses can be considered a risk
as they would allow a malicious JavaScript program, embedded in an HTML page, access the users file
system, possibly without notice by the user. But also network requests are usually limited to prevent cross-
site scripting attacks.

Until recently HTTP was the only network protocol supported by JavaScript. But MySQL uses the
properitary MySQL client server protocol to communicate with standard SQL clients. Thus, JavaScript
programs executed in a browser had no way to communicate with MySQL.

Client-side JavaScript had to make use of a proxy to communicate with MySQL. The proxy would speak
HTTP with the client-side JavaScript program and translate it into appropriate SQL statements to be send
to MySQL using any of the MySQL Connectors and the properitary MySQL Client/Server Protocol. Then,
the proxy would translate replies from MySQL into something easy to parse for the JavaScript program and
send a reply to the client-side JavaScript programs request. Most often script languages such as PHP, Perl
or Python have been used for proxying tasks. In very simple words, the HTTP Plugin for MySQL now takes
over this proxy task. By doing so, the entire software stack is simplified.

A majority of the recent browsers implement a XMLHttpRequest object which can be used to send
HTTP requests and read replies. Attempts are being made to standarize this interface, see also http://
www.w3.org/TR/XMLHttpRequest2/.

The XMLHttpRequest object can be used to query any of the MySQL HTTP endpoints. The
below example shows an HTML file with embedded client-side JavaScript which issues a SELECT
'Greetings!' question using myhttp as a default database. It is assumed that MySQL runs on local
host, listens on port 8080 and HTTP basic auth is configured with the username basic_auth_user and
the password basic_auth_passwd

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>MySQL HTTP SQL endpoint: XHR example</title>
</head>
<body>
 <script type="application/javascript">
 try {
 xmlHttp = new XMLHttpRequest();
 xmlHttp.open('GET', 'http://127.0.0.1:8080/sql/myhttp/SELECT%20\'Greetings!\'',
 true, 'basic_auth_user', 'basic_auth_passwd');
 xmlHttp.onreadystatechange = function () {
 document.write("Response: " + xmlHttp.responseText);
 };
 xmlHttp.send(null);
 } catch (e) {
 alert(e);
 }

JavaScript examples: basics, jQuery, Dojo

38

 </script>
 <p>
 NOTE: It is perfectly valid to get an error! Ask yourself why and how to
 prevent. Or, check the next example...
 </p>
</body>
</html>

Upon loading the HTML file into a browser, the JavaScript program is run and the result of the MySQL
request inserted into the HTML document. This approach is very simple but unfortunately, it cannot
always be used. The above may fail to access MySQL. The browsers sandbox limits XMLHttpRequest
to access resources with the same origin only. For example, if you used the file protocol (file://path/
to/above_script.html) to load the script into your browser, it will not be allowed to access any
resource on http://127.0.0.1. Whereas, if the above HTML document is served by a web server
running on host 127.0.0.1 and the browser has loaded it using http://127.0.0.1/path/to/
above_script.html, the script will be allowed to access MySQL also running on 127.0.0.1.

By default, it is not possible to request HTTP resources from remote servers this way. Using this approach,
cross origin requests are only possible with clients and servers that support cross-origin resource sharing
(CORS). The Lab release of the HTTP plugin for MySQL does not support the CORS standard but an
alternative method to overcome the same origin policy.

The browsers same origin policy can also be worked around using the HTML script tag. HTML pages
can embed scripts from arbitrary servers. Most modern AJAX enabled websites use this approach to
surpass the limitations of the XMLHttpRequest object.

The below HTML example demonstrates the idea. The HTML page loads a script from the URL http://
example.com. Note that any URL can be specified. The webserver http://example.com then sends
a valid JavaScript program as a reply. Once the reply has arrived, the browser executes the JavaScript
program.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>MySQL HTTP SQL endpoint: JSONP example</title>
 <script type="application/javascript">
 function response(results) {
 document.write("<p>Response callback called...</p>");
 document.write("<pre>" + results + "</pre>");
 if ("data" in results[0]) {
 document.write("<pre>" + results[0].data[0] + "</pre>");
 }
 if ("error" in results) {
 alert("Something went wrong, MySQL reports " + results.error);
 }
 }
 </script>
 <script type="test/javascript"
 src="http://basic_auth_user:basic_auth_passwd@example.com:8080/sql/
 myhttp/SELECT%20'Greetings!'?jsonp=response"></script>
</head>
<body>
</body>
</html>

If the client-side JavaScript is accessing a remote data source it is common practice for the server to return
a JavaScript program that contains nothing but one function call. The name of the callback function can be

JavaScript examples: basics, jQuery, Dojo

39

choosen freely by the caller. Once the caller has received the servers reply, the program is executed by the
browser and the callers callback function is run.

In case of the HTTP Plugin, the called function is given one argument. The argument contains a valid
JSON document. The document is the actual payload, it contains the actual reply of the data source.
Because JSON is padded with a function, this pattern is called JSONP.

shell> curl -v --user basic_auth_user:basic_auth_passwd
 --url "http://example.com:8080/sql/myhttp/SELECT+%27JSONP%27?jsonp=callback"

* Connected to example.com (example.com) port 8080 (#0)
* Server auth using Basic with user 'basic_auth_user'
> GET /sql/myhttp/SELECT+%27JSONP%27?jsonp=callback HTTP/1.1
> Authorization: Basic YmFzaWNfYXV0aF91c2VyOmJhc2ljX2F1dGhfcGFzc3dk
> User-Agent: curl/7.32.0
> Host: example.com:8080
> Accept: */*
>
< HTTP/1.1 200 OK
< Connection: Keep-Alive
< Cache-control: must-revalidate
< Server: MyHTTP 1.0.0-alpha
< Content-Length: 255
< Pragma: no-cache
< Content-Type: application/javascript
<
callback([
{
 "meta":[
 {"type":253,"catalog":"def","database":"","table":"","org_table":"",
 "column":"JSONP","org_column":"",
 "charset":33,"length":15,"flags":1,"decimals":31}
],
 "data":[
 ["JSONP"]
],
 "status":[{"server_status":2,"warning_count":0}]
}
]);

Please note, the communication between the browser and the webserver is asynchronous. Any
concurrently running client-side JavaScript is not blocked while the browser loads the script in the
background. On the contrary, if a client sends multiple asynchronous requests in row, there is no
guarantee that the requests will be received and performed by the server in the order sent nor that replies
arrive in order at the sender. This can be very confusing and lead to errors if you are used to synchronous
program execution only. Imagine the two queries UPDATE account SET balance = balance + 1
and UPDATE account SET balance = balance * 2 are run at random order. Given balance =
100 before execution of the two statements the outcome can either be balance = (100 + 1) * 2 =
202 or balance = (100 * 2) + 1 = 201.

The HTTP protocol is stateless. There is no concept of a transaction or session that spawns multiple
requests. Thus, all MySQL commands executed by the HTTP Plugin are run in autocommit mode. Each
and every successful command commits. Abort or rollback are not possible.

4.3.5.2 JavaScript framework examples

Assorted frameworks for browser-side JavaScript exist. In the following, we show usage examples for
some of them. Please understand, that we cannot cover all possible frameworks. Our selection covers only
some randomly selected ones to give an impression of patterns commonly found.

JavaScript examples: basics, jQuery, Dojo

40

The examples may be very short and hint only how to perform a JSONP request. Result processing and
error handling is often omitted. Production code should never trust input from JSONP requests but validate
it.

The discussion of the dojo framework is more complete. It does sketch the challenges of asynchronous
SQL over HTTP, gives code for parsing replies, handling errors and explains the limits of using MySQL
as a data store with the framework. Although the code is for dojo, it may be a good introduction to some
concepts and pitfalls that can arise no matter what framework is used.

jQuery

The jQuery JavaScript framework is a small and lightweight solution. A JSONP request to the HTTP Plugin
for MySQL can be made through the ajax object jQuery provides.

<!doctype html>
<html>
<head>
 <meta charset="utf-8" />
 <title>Simple JSONP request</title>
</head>
<body>
 <p>
 Example how to use jQuery. If needed,
 edit this file to load jQuery, set the HTTP Plugin connection parameter, and reload.
</p>
 <script src="http://code.jquery.com/jquery-2.1.1.js"></script>
 <script>
 $(document).ready(function() {

 var ret = $.ajax({
 url: "http://127.0.0.1:8080/sql/myhttp/SELECT%20'Hello world!'%20FROM%20DUAL",
 type: "GET",
 username: "basic_auth_user",
 password: "basic_auth_passwd",
 dataType : "jsonp",
 jsonp: "jsonp",
 success: function(json) {
 alert("Success, first data row: " + json[0].data[0]);
 },
 error: function(xhr, status, error_thrown) {
 alert("Sorry, there was a problem (did you setup things first?): " +
 status + "/" + error_thrown);
 },
 });
 });
 </script>
</body>
</html>

Dojo Toolkit

The Dojo Toolkit is a feature rich JavaScript framework for developing desktop and mobile device client-
side JavaScript applications. It does not only offer basic and portable APIs for interfacing with the HTTP
Plugin but also advanced data store abstractions. The data store abstractions in turn can be linked to many
graphics and charts to visualize data.

In the following some aspects of using the Dojo Toolkit with MySQL are discussed in brevity and a quick
overview on further examples contained in the source distribution of the HTTP Plugin are given. If you are
unfamiliar with the ideas and basic usage pattern of the Dojo Toolkit, please consult the Dojo manual first.

JavaScript examples: basics, jQuery, Dojo

41

The Dojo Toolkit abstracts some aspects of client-side JavaScript development that cannot be explained in
an aside manner.

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Dojo Toolkit JSONP request</title>
</head>
<body>
 <script src="http://ajax.googleapis.com/ajax/libs/dojo/1.10.0/dojo/dojo.js"
 data-dojo-config="async: true"></script>
 <script>
 require(["dojo", "dojo/io/script", "dojo/domReady!"],
 function(dojo) {
 function queryMySQL() {
 var targetNode = dojo.byId("results");
 var jsonpArgs = {
 url: "http://basic_auth_user:basic_auth_passwd@127.0.0.1:8080/sql/myhttp/SELECT%201%20FROM%20DUAL",
 callbackParamName: "jsonp",
 load: function(data) {
 targetNode.innerHTML = "<pre>" + dojo.toJson(data, true) + "</pre>";
 },
 error: function(error) {
 targetNode.innerHTML = "An unexpected error occurred: " + error;
 }
 };
 dojo.io.script.get(jsonpArgs);
 }
 dojo.ready(queryMySQL);
 }
);
 </script>
 <div id="results"></div>
</body>
</html>

The above example performs a JSONP request to run SELECT 1 FROM DUAL using the dojo/
io/script object. To perfom a HTTP GET request for a JSONP resource the developer creates a
jsonpArgs object which is passed as an argument to the Dojo function dojo.io.script.get(). Dojo
takes care of the necessary DOM manipulations to perfom a background request. Upon success, the
function load(), defined in the object jsonpArgs is called. The jsonpArgs.load() function is called
with the JSON that MySQL sent in reply to SELECT 1 FROM DUAL. In case of any errors, dojo calls the
jsonpArgs.error(). Either callback will display a message on the HTML page by manipulating the
contents of the results HTML page div element.

Please note, for brevity any validation of the data returned from MySQL has been omitted. Also,
communication errors are mostly ignored. Production code should take care of possible exceptions:

• MySQL may not return JSON or faulty JSON. Handle JSON parsing errors, if any.

• Valid JSON returned from MySQL is either a result object or an error object. The consumer needs to
handle both, not just the result object as in the above example.

• Network errors may occur. Connects may fail, requests may be rejected or time out.

The following script not only includes more debug output and error handling code but also shows how to
issue a sequence of SQL commands. Most JavaScript frameworks feature asynchronous background
HTTP requests. Should a client sent more than one HTTP request to MySQL at a time, the requests may

JavaScript examples: basics, jQuery, Dojo

42

be received in arbitrary order by MySQL. They may also be received in the order sent but replies may
arrive at the client in arbitrary order.

In many cases, SQL execution order matters. Let there be a sequence such as DROP TABLE, CREATE
TABLE, INSERT on the same table. The sequence is supposed to drop a table, recreate it and insert some
data into it. Assuming random execution order, it may happen that the INSERT statement is executed first.
If so, the INSERT may either fail because the table it is using does not exist yet or the data inserted into the
table will be lost because table is removed in the next step. In any case this is not the desired outcome of
the sequence of work. Please note, even if the order of execution is correct, the commands do not execute
as a single transaction. There will be no isolation from other concurrently operating clients. All commands
are run in autocommit mode.

The example shows a recursive approach to run a sequence of SQL statements ensuring ordering. The
list of statements is passed to the function mysql. The function takes the first entry from the list, shortens
the list by the first entry and issues an asynchronous HTTP request with SQL command from the lists first
entry. Only after processing the result of the HTTP request, the function calls itself with the shortened list
to process the next SQL command. When processing the results from MySQL, the function performs basic
checks of the reply format.

All kinds of network and framework exceptions are handled. Assorted callbacks are registered with the
frameworks notify functions.

<!DOCTYPE html>
<html>
<head>
 <title>Multiple queries</title>
 <meta charset="utf-8">
 <style type="text/css">
 <!--
 body { font-family:sans-serif; font-size:0.8em; }
 div { padding: 0.5em; margin: 0.5em; }
 .request { font-family:monospace; background-color: #E0E0E0; }
 .reply { font-family:monospace; background-color: #33FF33; }
 .error { font-family:monospace; background-color: #ff3333; }
 .status { background-color: #ffff33; }
 -->
 </style>
</head>
<body>
 <script src="http://ajax.googleapis.com/ajax/libs/dojo/1.10.0/dojo/dojo.js"
 data-dojo-config="async: true"></script>
 <script>
 require(
 ["dojo/dom", "dojo/on", "dojo/request/script", "dojo/request/notify",
 "dojo/json", "dojo/date", "dojo/domReady!"],
 function(dom, on, script, notify, JSON, date) {
 // Results will be displayed in resultDiv
 var resultDiv = dom.byId("resultDiv");
 var statusDiv = dom.byId("statusDiv");
 var startDate, lastDate;

 function mysql(queries) {

 resultDiv.innerHTML += '<div class="request">mysql(';
 if (0 == queries.length) {
 resultDiv.innerHTML += 'No more queries left)
';
 notify_add_diff(resultDiv);
 resultDiv.innerHTML += '</div>';
 return;
 }

JavaScript examples: basics, jQuery, Dojo

43

 var query = queries[0];
 queries.shift();
 resultDiv.innerHTML += query + ')
';
 resultDiv.innerHTML += queries.length + ' queries left </div>';

 var url = "http://basic_auth_user:basic_auth_passwd@127.0.0.1:8080/sql/myhttp/";
 url += encodeURIComponent(query);
 var promise = script.get(url, {jsonp: "jsonp", query: {jsonp_escape: 1}});
 promise.then(
 function (data) {
 notify_add_diff(resultDiv);
 data = JSON.parse(data, true);

 if (data.server_status) {
 resultDiv.innerHTML += '<div class="reply">';
 resultDiv.innerHTML += "(Status)";
 resultDiv.innerHTML += " Server Status: " + data.server_status;
 resultDiv.innerHTML += " Warnings: " + data.warning_count;
 resultDiv.innerHTML += " Affected Rows: " + data.affected_rows;
 resultDiv.innerHTML += " Last Insert ID: " + data.last_insert_id;
 } else if (data.errno) {
 resultDiv.innerHTML += '<div class="error">';
 resultDiv.innerHTML += "(Error)";
 resultDiv.innerHTML += " Errno: " + data.errno;
 resultDiv.innerHMTL += " SQL State: " + data.sqlstate;
 resultDiv.innerHTML += " Error: " + data.error;
 } else {
 resultDiv.innerHTML += '<div class="reply">';
 if (data.length) {
 resultDiv.innerHTML += "Number of results: " + data.length + "
";
 var result_idx;
 for (result_idx = 0; result_idx < data.length; result_idx++) {
 resultDiv.innerHTML += "Result set " + result_idx;
 resultDiv.innerHTML += "

";
 resultDiv.innerHTML += JSON.stringify(data[result_idx].data) + "

";
 resultDiv.innerHTML += "(Meta) " + JSON.stringify(data[result_idx].meta) + "
";
 resultDiv.innerHTML += "(Status) " + JSON.stringify(data[result_idx].status) + "
";
 resultDiv.innerHTML += "<hr />";
 }
 } else {
 resultDiv.innerHTML += "(Unknown) ";
 resultDiv.innerHTML += JSON.stringify(data);
 }
 }
 resultDiv.innerHTML += '</div>';
 mysql(queries);
 },
 function (err) {
 resultDiv.innerHTML += '<div class="error">';
 resultDiv.innerHTML += "(Error) " + err;
 resultDiv.innerHTML += '</div>';
 mysql(queries);
 }
);
 }

 function notify_add_diff(domDiv) {
 domDiv.innerHTML += date.difference(startDate, new Date(), "millisecond") +
 "ms total, ";
 domDiv.innerHTML += date.difference(lastDate, new Date(), "millisecond") +
 "ms since last
";
 lastDate = new Date();
 }

 notify("error",
 function (error) {
 statusDiv.innerHTML += '<div class="error">' + error + '</div>';

JavaScript examples: basics, jQuery, Dojo

44

 }
);
 notify("start",
 function () {
 statusDiv.innerHTML += '<div class="status">Start ';
 notify_add_diff(statusDiv);
 statusDiv.innerHTML += '</div>';
 }
);
 notify("send",
 function (data, cancel) {
 statusDiv.innerHMTL += '<div class="status">Sent request ';
 notify_add_diff(statusDiv);
 statusDiv.innerHTML += '</div>';
 }
);
 notify("load",
 function (data) {
 statusDiv.innerHMTL += '<div class="status">Received reply ';
 notify_add_diff(statusDiv);
 statusDiv.innerHTML += '</div>';
 }
);
 notify("error",
 function (error) {
 statusDiv.innerHMTL += '<div class="error">Error ';
 statusDiv.innerHTML += error + '
';
 notify_add_diff(statusDiv);
 statusDiv.innerHTML += '</div>';
 }
);
 notify("done",
 function (data) {
 if (data instanceof Error) {
 statusDiv.innerHMTL += '<div class="error">Done, response processed ';
 statusDiv.innerHMTL += data + '
';
 } else {
 statusDiv.innerHMTL += '<div class="status">Done ';
 }
 notify_add_diff(statusDiv);
 statusDiv.innerHTML += '</div>';
 }
);
 notify("stop",
 function () {
 statusDiv.innerHMTL += '<div class="status">Stop ';
 notify_add_diff(statusDiv);
 statusDiv.innerHTML += '</div>';
 }
);

 // Attach the onclick event handler to the makeRequest button
 on(dom.byId('makeRequest'), "click", function (evt) {
 resultDiv.innerHTML = "";
 queries = new Array(
 "DROP TABLE IF EXISTS test",
 "CREATE TABLE test(id INT)",
 "INSERT INTO test(id) VALUES (1), (2), (3)",
 "INSERT INTO test(id) VALUES (4), (5), (6)",
 "INSERT INTO test(id) VALUES (7), (8), (9)",
 "SELECT id FROM test ORDER by id ASC"
);
 startDate = lastDate = new Date();
 mysql(queries);
 }
);

JavaScript examples: basics, jQuery, Dojo

45

 }
);
 </script>
 <p>Maximum debug info from dojo</p>
 <form>
 <input type="button" id="makeRequest" value="Click to query MySQL" />
 </form>
 <h2>Results</h3>
 <div id="resultDiv"></div>
 <h2>Status</h2>
 <div id="statusDiv"></div>
</body>
</html>

Utility code such as result validation and handling should be abstracted and kept in library code that can be
reused on occasion. It is likely that such code could be used with most JavaScript frameworks.

Library code plays a vital role in bigger frameworks, such as Dojo. The full potential of Dojo becomes better
visible when integrating MySQL in form of a data store library. Assorted Dojo components can then use
MySQL as a store. Here, dojo should be considered only an example for many JavaScript frameworks.

The dojo framework provides abstractions for GUI elements such as graphs or spreadsheets. We show
two examples for spreadsheet data stores that demonstrate the potential and limits of the HTTP Plugin in
this context.

To run the follwing examples download the Dojo Toolkit 1.10 and unpack it. Copy the data store example
code from below into the directory path/to/dojo/dojo-release-1.10.0/store/. Modify the HTML
pages to reference you local copy of the toolkit. Make sure to configure MySQL as described and load the
example SQL data. See setup above for details.

The first example shows how to present the rows from a MySQL table in a sortable spreadsheet using the
dojo DataGrid. The DataGrid object takes care of rendering the table and lets you register assorted
event handler for user interaction. The data to be displayed is provided by an ObjectStore. The
ObjectStore abstracts the details of the storage used. Data can be stored in a static array, extracted
from some file or be kept in a MySQL database. The specifics of the data access are abstracted in library
code. This keeps the frontend code comprehensive and allows switching from one data store to another if
need be.

<!DOCTYPE html>
<html>
<head>
 <title>MySQL dojo store (mapped SQL table)</title>
 <meta charset="utf-8">
 <link rel="stylesheet"
 href="/path/to/dojo/dojo-release-1.10.0/dijit/themes/claro/claro.css">
 <style type="text/css">
 @import "/path/to/dojo/dojo-release-1.10.0/dojox/grid/resources/Grid.css";
 @import "/path/to/dojo/dojo-release-1.10.0/dojox/grid/resources/claroGrid.css";
 #gridDiv {
 height: 10em;
 }
 </style>
</head>
<body class="claro">
 <script src="/path/to/dojo/dojo-release-1.10.0/dojo/dojo.js"
 data-dojo-config="async: true"></script>
 <script>
 require(
 ["dojo/dom-construct", "dojo/parser", "dijit/Dialog",
 "dojox/grid/DataGrid", "dojo/data/ObjectStore",

JavaScript examples: basics, jQuery, Dojo

46

 "dijit/form/Select", "dojo/store/Memory", "dojo/dom",
 "dojo/on", "dojo/when", "dojo/request/script",
 "dojo/request/notify", "dojo/json", "dojo/store/JsonpMySQLFields",
 "dojo/domReady!"],
 function(domConstruct, parser, Dialog, DataGrid, ObjectStore,
 Select, Memory, dom, on, when, script, notify, JSON, mysqlp) {

 var store = new mysqlp({
 method: "http",
 host: "127.0.0.1",
 port: 8080,
 interface: "sql/myhttp",
 basicAuthUser: "basic_auth_user",
 basicAuthPassword: "basic_auth_passwd",
 mysqlTable: "dojo_jsonp_fields",
 mysqlFields: ["first_name", "last_name", "email"]
 });

 var ostore = new ObjectStore({ objectStore: store });

 var grid = new DataGrid({
 store: ostore,
 query: {},
 queryOptions: {},
 structure: [
 { name: "First Name", field: "first_name", width: "25%" },
 { name: "Last Name", field: "last_name", width: "25%" },
 { name: "Mail", field: "email", width: "50%" }
]}, "gridDiv");
 grid.startup();
 });
 </script>
 <h1>MySQL backed Grid/spreadsheet</h1>
 <form>
 <fieldset>
 <legend>Grid with MySQL contents</legend>
 <div id="gridDiv"></div>
 </fieldset>
 </form>
</body>
</html>

The code of the JsonpMySQLFields MySQL store used is below. To run the HTML example, create a
new file path/to/dojo/dojo-release-1.10.0/store/JsonpMySQLFields.js and copy the below
into it. Basically, the store maps the dojo internal API for data stores to SQL commands and issues HTTP
requests to store and fetch data in MySQL.

define("dojo/store/JsonpMySQLFields",
 ["../number", "../_base/array", "../string", "../request/script", "../when",
 "../_base/xhr", "../_base/lang", "../json", "../_base/declare",
 "./util/QueryResults"],
 function(number, array, string, script, when, xhr, lang,
 JSON, declare, QueryResults) {

 var base = null;

 return declare("dojo.store.JsonpMySQLFields", base, {

 constructor: function(options){
 declare.safeMixin(this, options);
 },

 method: "http",

JavaScript examples: basics, jQuery, Dojo

47

 host: "127.0.0.1",
 port: 8080,
 interface: "sql",
 basicAuthUser: "basic_auth_user",
 basicAuthPassword: "basic_auth_passwd",
 mysqlTable: "dojo_jsonp_fields",
 mysqlFields: [],
 idProperty: "dojo_id",

 get: function(oid){
 // SQL INJECTION
 var sql = "SELECT " + this.idProperty + "," + this.mysqlFields.toString();
 sql += " FROM " + this.mysqlTable + " WHERE dojo_id = " + number.parse(oid);
 return when(
 script.get(
 this._getAddress(sql),
 {jsonp: "jsonp"}
).then(lang.hitch(this, this._extractFirstRow))
);
 },

 getIdentity: function(object){
 return object[this.idProperty];
 },

 put: function(object, options){
 options = options || {};

 var sql = "";
 var values = "";
 var id = ("id" in options) ? options.id : this.getIdentity(object);
 var hasId = typeof id != "undefined";

 if (("overwrite" in options) && options["overwrite"]) {
 if (!hasId) {
 throw "You must provide the id of the object to update";
 }

 array.forEach(this.mysqlFields, lang.hitch(this, function (field) {
 if (field in object) {
 values += field + "=";
 values += "'" + this._escapeString(object[field]) + "', ";
 }
 }));
 if (values.length == 0) {
 throw "Object has no known property for SQL column mapping";
 }

 sql = "UPDATE " + this.mysqlTable + " SET " + values + " version = version + 1";
 sql += " WHERE " + this.idProperty + "= " + number.parse(id);

 } else {
 var fields = "";

 if (hasId) {
 fields += this.idProperty + ", ";
 values += number.parse(id) + ", "
 }

 array.forEach(this.mysqlFields, lang.hitch(this, function (field) {
 if (field in object) {
 fields += field + ", ";
 values += "'" + this._escapeString(object[field]) + "', "
 }
 }));
 if (fields.length == 0) {
 throw "Object has no known property for SQL column mapping";

JavaScript examples: basics, jQuery, Dojo

48

 }

 sql = "INSERT INTO " + this.mysqlTable + "(";
 sql += fields.substring(0, fields.length - 2);
 sql += ") VALUES (" + values.substring(0, values.length - 2) + ")";
 }
 return when(
 script.get(
 this._getAddress(sql),
 {jsonp: "jsonp" }
).then(
 function (reply) {
 if (reply && "last_insert_id" in reply)
 return reply.last_insert_id;
 return reply;
 }
)
);
 },

 add: function(object, options){
 options = options || {};
 options.overwrite = false;
 return this.put(object, options);
 },

 remove: function(id, options){
 options = options || {};
 var sql = "DELETE FROM " + this.mysqlTable + " WHERE " + this.idProperty + "=" + number.parse(id);
 return when(
 script.get(
 this._getAddress(sql),
 {jsonp: "jsonp" }
).then(
 function (reply) {
 if (reply && "errno" in reply) {
 return reply;
 }
 return;
 }
)
);
 },

 query: function(query, options){
 options = options || {};
 var sql = "SELECT " + this.mysqlFields.toString() + ", " + this.idProperty;
 sql += " FROM " + this.mysqlTable;

 if (options) {
 if (options.sort && options.sort.length) {
 var order_by = "";
 for (var i = 0; i< options.sort.length; i++) {
 if (order_by.length)
 order_by += ", ";
 var sort = options.sort[i];
 order_by += sort.attribute;
 order_by += (sort.descending) ? " DESC" : " ASC";
 }
 if (order_by.length)
 sql += " ORDER BY " + order_by;
 }

 if (options.start >= 0 || options.cout >= 0) {
 var limit = "";
 if (options.start)
 limit += options.start;

JavaScript examples: basics, jQuery, Dojo

49

 if ("count" in options && options.count != Infinity) {
 if (limit.length)
 limit += ", ";
 limit += options.count;
 }
 if (limit.length)
 sql += " LIMIT " + limit;
 }
 }
 var results = when(
 script.get(
 this._getAddress(sql),
 {jsonp: "jsonp" }
).then(lang.hitch(this, this._extractAllRows)));
 return QueryResults(results);
 },

 _getAddress : function(query) {
 return this.method + "://" + this.basicAuthUser + ":" +
 this.basicAuthPassword + "@" + this.host + ":" + this.port +
 "/" + this.interface + "/" + encodeURIComponent(query);
 },

 _extractRows : function(result, limit) {
 var data_only = new Array();
 var result_idx, row_idx;
 var object;

 if (result && "errno" in result) {
 data_only.push(result);
 return data_only;
 }

 for (result_idx = 0; result_idx < result.length; result_idx++) {
 if ("errno" in result[result_idx]) {
 data_only.push(result[result_idx]);
 } else {
 for (row_idx = 0; row_idx < result[result_idx].data.length; row_idx++) {
 if ((limit > 0) && (row_idx >= limit)) {
 return data_only;
 }
 tmp = new Object;
 array.forEach(result[result_idx].data[row_idx], function (value, column_idx) {
 tmp[result[result_idx].meta[column_idx].column] = value;
 });
 data_only.push(tmp);
 }
 }
 }
 return data_only;
 },

 _extractAllRows: function (result) {
 return this._extractRows(result, -1);
 },

 _extractFirstRow: function (result) {
 return this._extractRows(result, 1);
 },

 _escapeString: function (sql_value) {
 sql_value = sql_value.toString();
 return sql_value.replace('/"/g', '\\"');
 }
 });

});

JavaScript examples: basics, jQuery, Dojo

50

The sketched store has two limitations. For simplicity, possible SQL injection risks are not taken care of.
The _escapeString method will not catch all possible risks. Additional input filtering should be done.
While it is only a matter of time to secure it, handling totally unstructured data that requires extreme
schema flexibility is more difficult.

Instead of mapping the columns of one or more relational tables to the columns of a spreadsheet one can
also store all data in an unstructured JSON document inside a BLOB column of a relational table. Keeping
JSON documents inside a BLOB fulfills the criteria of extreme schema flexibility but MySQL offers no SQL
expressions to search the JSON documents. However, with a key-value centric API like that of a dojo store
and the option to do the search at runtime in the store itself, it may be still an option. Below is a variation of
the previous store. The below can be used to store arbitrary JSON in a BLOB column.

Note that this approach is similar to what the JSON Document (DOC) endpoint offers.

define("dojo/store/JsonpMySQL",
 ["../number", "../string", "../request/script", "../when", "../_base/xhr",
 "../_base/lang", "../json", "../_base/declare",
 "./util/QueryResults"],
function(number, string, script, when, xhr, lang, JSON, declare, QueryResults){

 var base = null;
 return declare("dojo.store.JsonpMySQL", base, {

 constructor: function(options){
 declare.safeMixin(this, options);
 },

 method: "http",
 host: "127.0.0.1",
 port: 8080,
 interface: "myhttp",
 basicAuthUser: "basic_auth_user",
 basicAuthPassword: "basic_auth_passwd",
 mysqlTable: "dojo_jsonp",
 mysqlBlob: "dojo_blob",
 mysqlId: "dojo_id",
 target: "",
 idProperty: "id",

 get: function(oid){
 var sql = "SELECT " + this.mysqlId + ", " + this.mysqlBlob + "FROM";
 sql += this.mysqlTable + " WHERE " + this.mysqlId + "=" + number.parse(oid);

 return when(
 script.get(
 this._getAddress(sql),
 {jsonp: "jsonp"}
).then(lang.hitch(this, this._extractFirstObject))
);
 },

 getIdentity: function(object){
 return object[this.idProperty];
 },

 put: function(object, options){
 options = options || {};
 var sql = "";
 var id = ("id" in options) ? options.id : this.getIdentity(object);
 var hasId = typeof id != "undefined";

JavaScript examples: basics, jQuery, Dojo

51

 if (("overwrite" in options) && options["overwrite"]) {
 if (!hasId) {
 throw "You must provide the id of the object to update";
 }

 sql = "UPDATE " + this.mysqlTable + " SET " + this.mysqlBlob + "= '";
 sql += this._escapeString(JSON.stringify(object)) + "'";
 sql += " WHERE " + this.mysqlId + "=" + number.parse(id);

 } else {
 sql = "INSERT INTO " + this.mysqlTable + "(" + this.mysqlBlob;
 if (hasId) {
 sql += ", " + this.mysqlId;
 }
 sql += ") VALUES ('" + this._escapeString(JSON.stringify(object)) + "'";
 if (hasId) {
 sql += ", " + number.parse(id);
 }
 sql += ")";
 }

 return when(
 script.get(
 this._getAddress(sql),
 {jsonp: "jsonp" }
).then(
 function (reply) {
 if (reply && "last_insert_id" in reply)
 return reply.last_insert_id;
 return reply;
 }
)
);
 },

 add: function(object, options){
 options = options || {};
 options.overwrite = false;
 return this.put(object, options);
 },

 remove: function(id, options){
 options = options || {};
 var sql = "DELETE FROM " + this.mysqlTable + " WHERE " +
 this.mysqlId + "=" + number.parse(id);
 return when(
 script.get(
 this._getAddress(sql),
 {jsonp: "jsonp" }
).then(
 function (reply) {
 if (reply && "errno" in reply) {
 return reply;
 }
 return;
 }
)
);
 },

 query: function(query, options){
 var sql = "SELECT " + this.mysqlId + ", " + this.mysqlBlob;
 sql += " FROM " + this.mysqlTable;

 options = options || {};

 if (options) {

JavaScript examples: basics, jQuery, Dojo

52

 if (options.start >= 0 || options.cout >= 0) {
 var limit = "";
 if (options.start)
 limit += options.start;
 if ("count" in options && options.count != Infinity) {
 if (limit.length)
 limit += ", ";
 limit += options.count;
 }
 sql += " LIMIT " + limit;
 }
 }
 var results = when(
 script.get(
 this._getAddress(sql),
 {jsonp: "jsonp" }
).then(lang.hitch(this, this._extractAllObjects)));

 return QueryResults(results);
 },

 _getAddress : function(query) {
 return this.method + "://" + this.basicAuthUser + ":" +
 this.basicAuthPassword + "@" + this.host + ":" + this.port +
 "/" + this.interface + "/" + encodeURIComponent(query);
 },

 _extractObjects : function(result, limit) {
 var data_only = new Array();
 var result_idx, row_idx;

 for (result_idx = 0; result_idx < result.length; result_idx++) {
 for (row_idx = 0; row_idx < result[result_idx].data.length; row_idx++) {
 if ((limit > 0) && (row_idx >= limit)) {
 return data_only;
 }
 data_only.push(JSON.parse(result[result_idx].data[row_idx][1]));
 }
 }
 return data_only;
 },

 _extractAllObjects : function (result) {
 return this._extractObjects(result, -1);
 },
 _extractFirstObject: function (result) {
 return this._extractObjects(result, 1);
 },

 _escapeString: function (sql_value) {
 sql_value = sql_value.toString();
 return sql_value.replace('/"/g', '\\"');
 }
 });
});

To use it, save it under path/to/dojo/dojo-release-1.10.0/store/JsonpMySQL.js. Modify the
HTML spreadsheet example to load the store instead of the previous JsonpMySQLFields. Replace the
store used by the spreadsheet. Note that this version of the spreadsheet is not sortable.

var store = new mysqlp({
 method: "http",
 host: "127.0.0.1",

Limitations and pitfalls

53

 port: 8080,
 interface: "sql/myhttp",
 basicAuthUser: "basic_auth_user",
 basicAuthPassword: "basic_auth_passwd",
 mysqlTable: "dojo_jsonp",
});

4.3.6 Limitations and pitfalls

The following differences, limitations and pitfalls have been identified by comparing the behaviour of the
HTTP Plugin with that of the MySQL C API.

When using the MySQL C API the SQL function CONNECTION_ID() returns the id of the MySQL
internal SQL thread processing the SQL function itself. The return value can be used, for example,
to kill the current connection or it issue question such as SELECT COMMAND, STATE, INFO FROM
INFORMATION_SCHEMA.PROCESSLIST WHERE ID = CONNECTION_ID(). Any such query will not
work properly when using the HTTP Plugin. With the HTTP Plugin CONNECTION_ID() is not guaranteed
to return the correct internal thread id. This is due to the way the prototype is implemented. There is no
known workaround.

Wrong results can be observed with binary data. The prototype tries to convert binary data on a per
character basis into UTF-8. If the conversion fails, it silently skipps the character. Thus binary results be
converted into empty or in random other strings that omit input data. This is a serious issue. Conversion
works flawless if the MySQL server returns numbers to the plugin using a binary charset (more precisely:
charset 63). This is, for example, the case with LAST_INSERT_ID(). All SQL functions that return binary
strings are likely to show wrong results when called through the HTTP Plugin. This includes COMPRESS(),
DECODE(), INET6_ATON(). Other functions may be affected as well. If in doubt, users should check the
meta data of a column in question to decide whether the result could be flawed. This issue is being worked
on.

4.4 The CRUD endpoint: /crud/

The CRUD endpoint allows basic data manipulation of records from tables that have a non-compound
primary key defined. Table records can be created, read, updated and deleted. Records are identified
by their primary key. Only tables that define a single column primary keys can be access through the
endpoint. NULL or empty strings are not allowed as primary key values.

HTTP methods are mapped to corresponding data manipulation operations.

• A HTTP PUT request either creates new records or updates existing ones.

• To read records a GET request is used.

• Records are removed using DELETE HTTP requests.

The interface cannot be used to perfrom data definition language (DDL) operations. That means, you
cannot, for example, send administrative commands, create schema object or modify user accounts. Only
data manipulation is allowed.

Valid requests result in replies with either no content or carry a valid JSON document. The only charset
supported is UTF-8, all input data should use UTF-8 and all replies will use UTF-8. At the time of writing,
HTTP requests are mapped to SQL statements internally. All user commands follow autocommit logic,
because HTTP is stateless and offers no concept of a session.

Query results do not contain any meta data information but data only to reduce their length.

API overview

54

All endpoints use the same security and user concept. HTTP basic authentication must be used with all
connections. Any successfully authenticated non-SSL connection can cause MySQL to carry out actions as
a predefined MySQL user. See above for SSL notes and further details.

4.4.1 API overview

The CRUD endpoint listens to HTTP(S) GET, PUT and DELETE commands on the host and port of the
HTTP Plugin, if the request URL prefix does match the server variable myhttp_curl_url_prefix.
Assuming default settings are used for plugins server variables, the CRUD endpoint answers to all URLs
that begin with http://127.0.0.1:8080/crud/ and http://127.0.0.1:8080/crud/. The full
URL pattern for requests is protocol://host:port/crud/database/table/ optionally followed by
the primary key of the record to be modified.

All endpoint expect a default database to be set as part of the URL: protocol://host:port/crud/
database/. The database URL element is mandatory but it can be an empty string in which case, the
default database is myhttp_default_db.

A primary key must be given as part of the URL for all GET, PUT and DELETE requests. The URL pattern
for any such request is protocol://host:port/crud/database/table/pk. Below is an example
how to use PUT to create a record. The record will be added to the table simple from the database
myhttp and be stored under the primary key 101. Please, note that a PUT request replaces an already
existing record with the same primary key value. Furthermore the return code for a successful PUT is
always 200 OK although 201 Created might be a better choice if the record has been newly added by
the HTTP request. Details may change in future versions.

shell> curl -H "Accept: application/json" -X PUT -d '{ "col_a": "Yet another example"}'
 --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/crud/myhttp/simple/101'

{
 "affected_rows": 1,
 "warning_count": 0
}

To read the newly created record, follow the URL pattern protocol://host:port/crud/database/
table/pk and issue a GET request for http://127.0.0.1:8080/crud/myhttp/simple/101

shell> curl --user basic_auth_user:basic_auth_passwd
 --url "http://127.0.0.1:8080/crud/myhttp/simple/101"

{
 "id": "101",
 "col_a": "Yet another example"
}

The CRUD endpoint does not return any meta data with the record but only the data of the record itself.
Therefore the size of the reply will be smaller than that from the SQL and Document endpoints. Network
traffic is less.

The newly created record can be removed by sending a DELETE HTTP request.

shell> curl -v -X DELETE
 --user basic_auth_user:basic_auth_passwd

HTTP methods, headers and status codes

55

 --url 'http://127.0.0.1:8080/crud/myhttp/simple/101'
[...]

* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)
* Server auth using Basic with user 'basic_auth_user'
> DELETE /crud/myhttp/simple/101 HTTP/1.1
> Authorization: Basic YmFzaWNfYXV0aF91c2VyOmJhc2ljX2F1dGhfcGFzc3dk
> User-Agent: curl/7.32.0
> Host: 127.0.0.1:8080
> Accept: */*
>
< HTTP/1.1 200 OK
< Connection: Keep-Alive
< Cache-control: must-revalidate
< Server: MyHTTP 1.0.0-alpha
< Content-Length: 0
< Pragma: no-cache
< Content-Type: application/json

The following table gives SQL equivalents for the CRUD endpoint actions. The HTTP Plugin for MySQL
maps CRUD endpoint requests to the SQL commands shown. Performance optimization of the internal
implementation are possible. But, the simple mapping to SQL allows setting the focus on the user API and
to adapt it very quickly at this early development stage.

CRUD endpoint SQL equivalent

Create (and replace): PUT REPLACE INTO db.table SET ..., pk
= ...

Read: GET SELECT * FROM db.table WHERE pk = ...

Delete: DELETE DELETE FROM db.table WHERE pk = ...

4.4.2 HTTP methods, headers and status codes

The following HTTP headers are set by the CRUD endpoint. The headers do not differ from those set by
the SQL endpoint.

Header Description

Server Always given. Can be considered as an API version. For example: MyHTTP
1.0.0-alpha

Cache-control Always given. Always must-revalidate

Pragma Always given. Always no-cache

Content-Length Always given.

Content-Type Set to application/json for 200 OK, 400 Bad Request, 401
Unauthorized. Other replies may or may not contain it.

Connection Always given. Always Keep-Alive.

The CRUD endpoint supports GET, PUT and DELETE requests. Other requests will be rejected with code
405 Method Not Allowed. The reply to such a rejected request contains no content. No error message
is given.

Resources are protected with HTTP basic authentication. Should HTTP basic authentication fail or not
be used with the request at all, the server replies with code 401 Unauthorized and the JSON error
message {"errno":1045, "sqlstate":"28000","error":"401 Unauthorized"}.

HTTP methods, headers and status codes

56

A request that uses an allowed method but has a malformed URL results in a code 400 Bad
Request reply. The GET, DELETE and PUT methods must be used with an URL following the pattern
protocol://host:port/crud/database/table/primary_key_value. The code is also used to
indicate a general error. An error reply may show no contents or show a JSON error message document
that gives details.

PUT methods must sent a JSON object to the server. The JSON object must be flat, which means its
members must use scalar datatypes. The members must either be of type string or null. For example, if
you want to insert a number in a column of the SQL type FLOAT you cannot provide a JSON number:

shell> curl -v -d '{"col_float": 0.123}'
 -X PUT --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/crud/myhttp/sql_types/101'

[...]
< HTTP/1.1 400 Bad Request
< Connection: Keep-Alive
< Cache-control: must-revalidate
* Server MyHTTP 1.0.0-alpha is not blacklisted
< Server: MyHTTP 1.0.0-alpha
< Content-Length: 0
< Pragma: no-cache
< Content-Type: application/json
<

Instead, the number must be given as a string. Please, expect this limitation to be lifted soon.

shell> curl -v -d '{"col_float": "0.123", "col_char": "a",
 "col_date" : "2015-09-16 15:18:32", "col_decimal": "1.23",
 "col_bigint": "12345678"}'
 -X PUT
 --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/crud/myhttp/sql_types/101'

* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)
* Server auth using Basic with user 'basic_auth_user'
> PUT /crud/myhttp/sql_types/101 HTTP/1.1
> Authorization: Basic YmFzaWNfYXV0aF91c2VyOmJhc2ljX2F1dGhfcGFzc3dk
> User-Agent: curl/7.32.0
> Host: 127.0.0.1:8080
> Accept: */*
> Content-Length: 124
> Content-Type: application/x-www-form-urlencoded
>
* upload completely sent off: 124 out of 124 bytes
< HTTP/1.1 200 OK
< Connection: Keep-Alive
< Cache-control: must-revalidate
< Server: MyHTTP 1.0.0-alpha
< Content-Length: 37
< Pragma: no-cache
< Content-Type: application/json
<
{"affected_rows":1,"warning_count":1}

The names of the input object members must match the column names of the underlying table. If a table
has two columns col_a, col_b in addition to a primary key column id, then the JSON input object may
have at most two members: {"col_a": ..., "col_b": ...}. Adding a member with the name of the

JSON with padding (JSONP)

57

primary key column is an error. The primary key value is always given as part of the URL but never as an
object member.

shell> curl -X PUT -d '{"id":"1","col_a":"Hello"}'
 --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/crud/myhttp/simple/1'

{
 "errno": 1110,
 "error": "Column 'id' specified twice"
}

The input JSON object of a PUT command must include members and values for all columns, but the
primary key column, from the underlying that have no default value. For example, the example table
simple has two columns. The primary key column id and column col_a. Thus, a valid JSON input object
may have at most one member col_a. However, the member is not mandatory because a default value
has been defined for the underlying SQL column. An empty JSON object can be used as input.

mysql> SHOW CREATE TABLE simple\G

*************************** 1. row ***************************
Table: simple
Create Table: CREATE TABLE `simple` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `col_a` varchar(255) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8

The use of AUTO_INCREMENT primary key columns is not supported. Tables may have a primrary column
defined with the column flag set but cients must always provide the primary key value in the URL. The
CRUD endpoint currently cannot be used in such a way that an auto increment column generates a
primary key value on insert.

The table summarizes the supported HTTP request methods:

HTTP request method Description

GET Use standard URL pattern. No input data, no special request headers.

PUT Use standard URL pattern. No special request headers. Input data must be
valid JSON:

• Input must be a flat JSON object: object members must be string or null.

• For every column of the underlying that has no default value defined, there
must be a member of the same name as the column.

• Primary key must not be part of the object.

DELETE Use standard URL pattern. No input data, no special request headers.

4.4.3 JSON with padding (JSONP)

The CRUD endpoint supports JSON with padding for GET requests. Other requests ignore the JSONP
URL parameters. The URL parameters are the same as for the SQL endpoint:

JSON content formats

58

Parameter Description

jsonp=<callback> Enables JSON with padding. The parameters value is used as the callback
function name. Replies returned from the plugin change from reply to
callback(reply).

jsonp_escape Only considered when jsonp is also given. Replies returned from the plugin
change from reply to callback("reply") with reply being escaped
appropriately.

4.4.4 JSON content formats

Any valid request is supposed to return a valid JSON document. A valid request is one that uses one of
the supported HTTP methods and a well formed URL for the HTTP method. A valid JSON document is
defined as a JSON array or object. Please, see the SQL endpoint description for further details on the
JSON standard.

There are three types of JSON documents: result documents, error documents and status documents.

REPLY:
 jsonp_function(answer) |
 answer

jsonp_function:
 string

answer:
 resultset |
 error |
 status

The structure of the documents is extremly simple. The documents can be very small in size due to their
simplicity and the omission of meta data. JSON result documents returned by the CRUD endpoint will
always be smaller than those returned from the SQL endpoint. Unless JSON unicode encoding causes
overhead, replies will also be smaller than standard replies to clients using the MySQL Client/Server
Protocol. The lower network traffic may bare some performance advantage. However, please note, that the
CRUD endpoints result document always contains a complete row whereas a SQL user may fetch selected
columns only. Also, performance has not been a goal in the development of the HTTP Plugin.

Clients can often check the HTTP return code to determine the structure of the HTTP return contents,
if any. For example, a 405 Method Not Allowed reply is not expected to be accomplished with any
JSON content. Correct requests will often return 200 OK together with a JSON result, error or status
document. The request method helps to further narrow the list of valid replies in case of 200 OK. Only a
GET request is expected to return a result. A successful PUT request returns a status document, whereas
a successful DELETE returns no contents.

HTTP return code Content Methods Details

401 Unauthorized Error document or no
content

All Wrong HTTP basic
authentication credentials

400 Bad Request Error document All Check error message.

405 Method Not Allowed No content Any but GET, PUT,
DELETE

200 OK Result document GET

200 OK Status document PUT

200 OK No content DELETE

JSON result document

59

HTTP return code Content Methods Details

404 Not Found Error document GET, DELETE

4.4.5 JSON result document

The JSON result document is the JSON equivalent of a single table row. It contains only the row data,
there is no meta data. The result document consists of one object member for each column in the row. The
member name equals the column name.

resultset:
{
 "column_name" : column_value (, "column_name" : column_value ...)
}

column_name: string

column_value:
 string |
 null

Column values are returned as strings or null. Underlying SQL column data types are not mapped to JSON
data types. Because of the omission of meta data for simplicity and reduction of network traffic, clients
cannot automatically map the underlying SQL column types into data types of the target domain. If you
need meta data, consider using the SQL endpoint instead.

shell> curl --user basic_auth_user:basic_auth_passwd
 --url "http://127.0.0.1:8080/crud/myhttp/sql_types/1"

{
 "id": "1",
 "col_char": "CHAR(127)",
 "col_null": null,
 "col_date": "2014-08-21",
 "col_decimal": "123.45",
 "col_float": "0.9999",
 "col_bigint": "9223372036854775807"
}

JSON result documents are produced by GET requests only.

4.4.6 JSON error document

The CRUD endpoint may reply with a JSON error document to failed requests. Error documents should be
expected when the return code is 400 Bad Request or 401 Unauthorized. The error document is a
JSON object with two members: errno, error.

error:
{
 "errno": int,
 "error": string
}

The error number errno and error description error often show MySQL server error codes and
messages. The CRUD endpoint is using SQL commands to execute some HTTP requests. Should a SQL
command fail its error code and message are reported in the HTTP reply.

JSON status document

60

shell> curl -v --user basic_auth_user:basic_auth_passwd
 --url "http://127.0.0.1:8080/crud/test/test/1"

[...]
< HTTP/1.1 400 Bad Request
< Connection: Keep-Alive
< Cache-control: must-revalidate
< Server: MyHTTP 1.0.0-alpha
< Content-Length: 94
< Pragma: no-cache
< Content-Type: application/json
<
{
 "errno": 1044,
 "error": "Access denied for user 'http_sql_user'@'127.0.0.1' to database 'test'"
}

In some cases the MySQL server has no adequate error code defined. Then, the HTTP Plugin will use a
generic error code such as 2000 and provide it's own error message. A malformed HTTP request URL is
an example of an error condition for which the server has no standard error code. This is an exception that
does not arise with MySQL normally.

shell> curl --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/crud/myhttp/simple/'

{
 "errno": 2000,
 "error": "The request URL must include a primary key value"
}

4.4.7 JSON status document

A successful HTTP PUT request for the CRUD endpoint returns code 200 OK together with a JSON
status document. The status object has two members. The affected_rows member reports the number
of modified rows. The warning_count is the number of SQL warnings caused by the SQL statement
that the CRUD endpoint used internally to perform the requested action. Both values are reported by the
server. Please, consult the documentation of the MySQL C API functions mysql_affected_rows() and
mysql_warning_count() for more details.

error:
{
 "affected_rows": int,
 "warning_count": int
}

Below is an example of a status document that has been sent in reply to adding a record to a table from
the example setup. The PUT command affects one row in the table simple from the database myhttp.
There was neither a SQL error not a SQL warning during the execution.

shell> curl -X PUT -d '{"col_a":"Hello"}'
 --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/crud/myhttp/simple/1'

{
 "affected_rows": 1,

Commandline examples

61

 "warning_count": 0
}

4.4.8 Commandline examples

The CRUD endpoint offers key - row access semantics. All data is access through a primary key. You
cannot search for data in any other way but by key. All data is stored in relational tables. An access to a
row always returns all columns. Returned rows include no meta data, data type information is lost.

The properties of the endpoint can be read as a limitation or understood as a feature. The CRUD endpoint
qualifies for applications that deal with highly structured data. It is not possible for a client to burden the
database server with complex queries. Only fast primary key based operations are permitted.

Data definition statements or general administrative statements cannot be executed, which further restricts
the use cases. The absence can be seen as an additional security feature. Functionality is not made
available to the user because of the limited API. Accesses through the API are additionally secured using
standard user account management features.

To get started with the CRUD interface, create a table crud_messages in the database myhttp, which
is the example database used for the HTTP Plugin. Setup instructions for the example database and
required plugin settings are given above. Do not define a primary key for the table crud_messages. Insert
a record.

mysql> CREATE TABLE `crud_messages` (
 `message_id` int(11) NOT NULL,
 `created` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
 `sender` varchar(127) NOT NULL DEFAULT 'anonymous',
 `message` varchar(1024) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
mysql> INSERT INTO crud_messages(message_id, message) VALUES (1, 'Three-wheelers are fun');

The CRUD endpoint URL pattern for accessing a table is http//server:port/crud/database/
table/pk which means, a HTTP GET access for http//127.0.0.1:8080/crud/myhttp/
crud_messages/1 is the equivalent to SELECT * FROM myhttp.crud_messages WHERE pk_col
= 1 with pk_col being the name of the tables primary key column. Because no primary key has been
defined for the table crud_messages the HTTP request fails with code 400 Bad Request and an error
document that gives details.

shell> curl -v --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/crud/myhttp/crud_messages/1'

[...]
* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)
* Server auth using Basic with user 'basic_auth_user'
> GET /crud/myhttp/crud_messages/1 HTTP/1.1
> Authorization: Basic YmFzaWNfYXV0aF91c2VyOmJhc2ljX2F1dGhfcGFzc3dk
> User-Agent: curl/7.32.0
> Host: 127.0.0.1:8080
> Accept: */*
>
< HTTP/1.1 400 Bad Request
< Connection: Keep-Alive
< Cache-control: must-revalidate
< Server: MyHTTP 1.0.0-alpha
< Content-Length: 61
< Pragma: no-cache
< Content-Type: application/json
<

Commandline examples

62

{
 "errno": 1173,
 "error": "This resource requires a primary key"
}

Add a primary key to the table myhttp.

mysql> ALTER TABLE crud_messages ADD PRIMARY KEY(message_id);

Retry the HTTP request. It will now return the row identified by the primary key value 1.

mysql> curl -v --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/crud/myhttp/crud_messages/1

[...]
* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)
* Server auth using Basic with user 'basic_auth_user'
> GET /crud/myhttp/crud_messages/1 HTTP/1.1
> Authorization: Basic YmFzaWNfYXV0aF91c2VyOmJhc2ljX2F1dGhfcGFzc3dk
> User-Agent: curl/7.32.0
> Host: 127.0.0.1:8080
> Accept: */*
>
< HTTP/1.1 200 OK
< Connection: Keep-Alive
< Cache-control: must-revalidate
< Server: MyHTTP 1.0.0-alpha
< Content-Length: 107
< Pragma: no-cache
< Content-Type: application/json
<
{
 "message_id": "1",
 "created": "2014-08-28 19:37:58",
 "sender": "anonymous",
 "message": "Three-wheelers are fun"
}

The HTTP PUT method can be used to add records. Below is the equivalent of REPLACE INTO
myhttp.crud_messages SET message_id = 2, sender = 'Ulf', message = 'My three-
wheeler is broken :-('. Please note, the HTTP request does not contain input data for all columns.
The primary key column value is always derived from the URL http://127.0.0.1:8080/crud/
myhttp/crud_messages/2: message_id = 2. The values for sender and message are taken from
the JSON input {"sender": "Ulf", "message": "My three-wheeler is broken :-("}. It is
not mandatory to include a value for the created column, because the columns SQL definition created`
timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP includes a default.

In reply to the command the server sends 200 OK and a status message which confirms that one row was
affected.

shell> curl -v -X PUT
 -d '{"sender": "Ulf", "message": "My three-wheeler is broken :-("}'
 --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/crud/myhttp/crud_messages/2'

[...]
* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)

Commandline examples

63

* Server auth using Basic with user 'basic_auth_user'
> PUT /crud/myhttp/crud_messages/2 HTTP/1.1
> Authorization: Basic YmFzaWNfYXV0aF91c2VyOmJhc2ljX2F1dGhfcGFzc3dk
> User-Agent: curl/7.32.0
> Host: 127.0.0.1:8080
> Accept: */*
> Content-Length: 62
> Content-Type: application/x-www-form-urlencoded
>
< HTTP/1.1 200 OK
< Connection: Keep-Alive
< Cache-control: must-revalidate
< Server: MyHTTP 1.0.0-alpha
< Content-Length: 37
< Pragma: no-cache
< Content-Type: application/json
<
{
 "affected_rows": 1,
 "warning_count": 0
}

shell> curl --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/crud/myhttp/crud_messages/2'

{
 "message_id": "2",
 "created": "2014-08-29 10:07:05",
 "sender": "Ulf",
 "message": "My three-wheeler is broken :-("
}

A new PUT request for the same URL can be issued to replace the record stored under the URL. There
is no warning that existing data will be replaced. The value of 2 reported for affected_rows hints that a
record existed before and has been replaced. Two rows are affected: the old record and the newly inserted
one. The affected_rows value is provided by the server.

shell> curl -X PUT -d '{"sender": "Andrey", "message":"Hmm"}'
 --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/crud/myhttp/crud_messages/2'

{
 "affected_rows": 2,
 "warning_count": 0
}

shell> curl --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/crud/myhttp/crud_messages/2'

{
 "message_id": "2",
 "created": "2014-08-29 10:09:36",
 "sender": "Andrey",
 "message": "Hmm"
}

The PUT method cannot be used to update a record partially. Andrey's message cannot be changed with
a JSON object that is made of a message member only. This will create a new record with the servers
defaults for sender and created, the message set to Enjoy your weekend and the primary key value
of 2

Commandline examples

64

shell> curl -X PUT -d '{"message":"Enjoy your weekend"}'
 --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/crud/myhttp/crud_messages/2'

{
 "affected_rows": 2,
 "warning_count": 0
}

shell> curl --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/crud/myhttp/crud_messages/2'

{
 "message_id": "2",
 "created": "2014-08-29 11:11:51",
 "sender": "anonymous",
 "message": "Enjoy your weekend"
}

Use DELETE requests to remove records. The return code indicates whether a record has been removed
or you tried to access a non-existing record.

shell> curl-v -X DELETE
 --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/crud/myhttp/crud_messages/2'

[...]
* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)
* Server auth using Basic with user 'basic_auth_user'
> DELETE /crud/myhttp/crud_messages/2 HTTP/1.1
> Authorization: Basic YmFzaWNfYXV0aF91c2VyOmJhc2ljX2F1dGhfcGFzc3dk
> User-Agent: curl/7.32.0
> Host: 127.0.0.1:8080
> Accept: */*
>
< HTTP/1.1 200 OK
< Connection: Keep-Alive
< Cache-control: must-revalidate
< Server: MyHTTP 1.0.0-alpha
< Content-Length: 0
< Pragma: no-cache
< Content-Type: application/json

shell> curl -v -X DELETE
 --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/crud/myhttp/crud_messages/2'

[...]
* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)
* Server auth using Basic with user 'basic_auth_user'
> DELETE /crud/myhttp/crud_messages/2 HTTP/1.1
> Authorization: Basic YmFzaWNfYXV0aF91c2VyOmJhc2ljX2F1dGhfcGFzc3dk
> User-Agent: curl/7.32.0
> Host: 127.0.0.1:8080
> Accept: */*
>
< HTTP/1.1 404 Not Found
< Connection: Keep-Alive
< Cache-control: must-revalidate
< Server: MyHTTP 1.0.0-alpha
< Content-Length: 0
< Pragma: no-cache

JavaScript examples: basics, AngularJS

65

4.4.9 JavaScript examples: basics, AngularJS

The Lab release of the HTTP Plugin does not support the CORS standard to overcome the same origin
policy. Most JavaScript programs will have to use JSONP to access the CRUD endpoint. The CRUD
endpoint supports JSONP only with GET requests. This restricts JavaScript clients to read requests in this
early version.

4.4.9.1 Reading records with AngularJS and JSONP

The AngularJS JavaScript framework describes itself as a structural framework for dynamic web
applications. The static declarative nature of HTML is overcome by extending HTML. HTML becomes
a template language. According to the authors of the framework, the framework was built with CRUD
applications in mind.

The APIs of the HTTP Plugin for MySQL are anything but finalized. More features, such support for CORS,
are required to create CRUD applications using MySQL and AngularJS. Still, it is already possible to query
MySQL from AngularJS.

The below example shows how to use the AngularJS $http service to fetch a row identified by the primary
key value of 1 from the MySQL table simple of the myhttp database through the CRUD endpoint.
AngularJS applications encourage the use of the Model-View-Controller (MVC) design pattern. In
AngularJS terms, the HTML page of the example is a template. The view is the DOM manipulated version
of the template, the model is the data shown to the user and the controller encapulated the business logic
on the model.

<!DOCTYPE html>
<html ng-app="" ng-controller="crud">
<head>
 <title>AngularJS CRUD example </title>
 <meta charset="utf-8">
</head>
<body>
 <script language="JavaScript" src="http://code.angularjs.org/1.2.9/angular.min.js"></script>
 <script language="JavaScript">

 // Utility to generate a CRUD endpoint request URL
 function get_mysql_url(table, key) {
 return "http://basic_auth_user:basic_auth_passwd@" +
 "127.0.0.1:8080/crud/myhttp/" +
 table + "/" + key + "?jsonp=JSON_CALLBACK";
 }

 // "Main" (controller)
 function crud($scope, $http) {
 var url = get_mysql_url("simple", 1);
 $http.jsonp(url)
 .success(
 function (data, status, headers, config) {
 if (data && data.col_a) {
 $scope.reply = data.col_a;
 } else {
 $scope.reply = "Unknown reply format :-(";
 }
 })
 .error(
 function (data, status, headers, config) {
 if (data && data.error) {
 $scope.reply = "Error: " + data.error;
 } else {
 $scope.reply = "Unkown error";
 }

JavaScript examples: basics, AngularJS

66

 }
);
 }
 </script>
 <p>
 {{ reply }}
 </p>
</body>
</html>

The example uses the entire HTML page as a template for the view. The views controller is set with <html
ng-app="" ng-controller="crud">. Strictly speaking, crud is a factory function that creates an
instance of a controller assigned to the view.

The crud controller does nothing but use the built-in $http service to perform a JSONP HTTP request.
The JSONP request is performed through the shortcut method jsonp, which takes an URL and an
optional config object as its parameters. The jsonp method returns a HTTP Promise. Promises are a
standard technique for handling asynchronous operations. The HTTP Promise has two HTTP specific
methods success and error. The success method will be called when MySQL returns a status code
between 200 and 299, as it is the case for a successful CRUD endpoint read. When called, success
checks the data it gets from MySQL and sets the reply property of scope. For our purposes, the scope
can be considered glue code between the model and the view. Here, we use the scope in a one way
fashion to exchange data between the controller and the view. Whenever the scope property is modified,
AngularJS renders the property value into the bound {{ reply }} expression.

The next example discusses a standard pitfall of asynchronous APIs such as HTTP APIs. Assume you
want to read all rows from the table simple ordered by the primary key column id.

mysql> SELECT * FROM simple ORDER BY id ASC;

+----+--------+
| id | col_a |
+----+--------+
1	Hello
2	
3	world!
+----+--------+

Three HTTP requests need to be issued to read the rows through the CRUD interface. To receive an
ordered list of rows it is not sufficient to sent the requests in primary key column order. MySQL may receive
the requests in any order and reply in any order. Results can be shuffled. A client can overcome this
problem in several ways. For example, the client can wait for all results to arrive and reorder them. Or, the
client can convert the asynchronous execution into a synchronous one. The use of promise chaining to turn
an asynchronous execution into a synchronous one is demonstrated in the SQL endpoint chapter using the
Dojo framework.

Therefore, the below example uses the sort approach. As before, Angulars built-in $http service is used
to query the HTTP Plugin CRUD endpoint. All results received are stored in an array. The array is indexed
by the primary key value and the view displays array values in index order.

<!DOCTYPE html>
<html ng-app="" ng-controller="crud">
<head>
 <title>AngularJS CRUD example </title>

JavaScript examples: basics, AngularJS

67

 <meta charset="utf-8">
</head>
<body>
 <script language="JavaScript" src="http://code.angularjs.org/1.2.9/angular.js"></script>
 <script language="JavaScript">

 // Utility to generate a CRUD endpoint request URL
 function get_mysql_url(table, key) {
 return "http://basic_auth_user:basic_auth_passwd@" +
 "127.0.0.1:8080/crud/myhttp/" +
 table + "/" + key + "?jsonp=JSON_CALLBACK";
 }

 // Create a HTTP Promise for accessing MySQL
 function get_mysql_crud_http_promise(http, table, key, replies) {
 var url = get_mysql_url(table, key);
 return http.jsonp(url, {id: key, result: replies})
 .success(
 function (data, status, headers, config) {
 // Transform the MySQL reply and add to results list
 config.result[config.id] = {
 key: config.id,
 msg: data.col_a
 };
 })
 .error(
 function(data, status, headers, config) {
 // HTTP reply code is not 2xx - we may or may not have data
 config.result[config.id] = {
 key: config.id,
 msg: "Error: " + ((data && data.error) ? data.error : "Unknown error")
 };
 }
)
 }

 // "Main" (controller)
 function crud($scope, $http) {
 var replies = new Array(4);
 var key;

 replies[0] = {msg: "Fetching records from table simple...", key: "n/a"};
 $scope.greetings = replies;

 // Fetch all three records from the table simple
 for (key = 1; key <= 3; key++) {
 get_mysql_crud_http_promise($http, "simple", key, replies)
 .then($scope.greetings = replies);
 }
 }
 </script>
 <p>

 <li ng-repeat="msg in greetings track by $index">
 {{ msg.msg }}
(key: {{ msg.key }})

 </p>
 </body>
</html>

The JSON document (DOC) endpoint: /doc/

68

For all HTTP Promises the then method is set. It gets called whenever the promise has successfully
fetched data from MySQL or failed doing so. The then method updates the scope property greetings.
Angular notices the change and updates the view.

For brevity and to reduce the complexity of the examples only few AngularJS features are used. For
example, one could use a service for better code reuse.

4.5 The JSON document (DOC) endpoint: /doc/

Arbitrary JSON documents can be stored and retrieved using the DOC endpoint. There is no limit to the
nesting level of the documents. All documents have a unique ID and a revision number. Documents can be
read, inserted, replaced as a whole and deleted. Search is based on key-document semantics.

HTTP methods are mapped to corresponding data manipulation operations.

• Depending on the URL, a HTTP PUT either creates a SQL table to hold documents or inserts a
document to a table.

• A GET request is used to fetch a document.

• Documents are removed using DELETE HTTP requests. A DELETE request can also be used to drop a
table and with it all documents it contains.

By default dcuments are stored in BLOB columns of underlying relational tables. The choice of the SQL
column type determines the maximum size of the JSON document, other column types can be configured.
Appropriate tables can be created and removed through the HTTP DOC endpoint. Other data defintion
operations, including modifying the tables that hold documents, are not possible.

JSON is stored "as-is". Whitespace and formatting may not be preserved but JSON datatypes are.
Because no mapping between relational tables, columns and SQL data types happens no mismatch
between JSON data types and SQL data types can occur.

The only supported character set is UTF-8.

4.5.1 API overview

The DOC endpoint API lets users work with JSON documents. HTTP(S) GET, PUT and DELETE methods
can be used to work with documents. All messages exchanged between the client and the server use the
JSON format. Like all other endpoints, the DOC endpoint supports the UTF-8 charset only.

Requests for the DOC endpoint must begin with the URL pattern: protocol://host:port/doc/
database/. The endpoints URL prefix (default: /doc/) is configured with the system variable
myhttp_document_url_prefix. Including a default database in the URL is mandatory but it is valid
to use an empty string: protocol://host:port/doc//. In case of an empty string the HTTP Plugin
defaults to myhttp_default_db. Valid URLs are then followed by command specific elements.

For example, the URL pattern to create a new table blog_posts for storing documents is: protocol://
host:port/doc/database/table.

shell> curl -X PUT --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/blog_posts'

{
 "info": "Table created"
}

API overview

69

The PUT method is used for creating tables, inserting documents and updating documents. Every
document has a unique identifier and a revision counter. Clients must provide the document identifier
but not the revision number when inserting documents into tables. The HTTP Plugin is using a
VARCHAR(36) to store the identifier. This allows you to use identifiers with self-explaining values such as
doc_api_overview in the example below:

shell> curl -d '{"when": "2014-09-09 15:22", "title": "API overview", "content": "..."}'
 -X PUT --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/blog_posts/doc_api_overview'

{
 "info": "Document added"
}

The revision counter is automatically added to documents upon their creation for optimistic locking. When
documents are retrieved using a GET request, they contain two special members added by the HTTP
plugin. The _id member contains the identifier value and _rev is the revision counter.

shell> curl --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/blog_posts/doc_api_overview'

{
 "_id": "doc_api_overview",
 "_rev": 1,
 "when": "2014-09-09 15:22",
 "title": "API overview",
 "content": "..."
}

The revision counter is a tribute to the stateless nature of the HTTP protocol. If two clients fetch the same
document, one updates it and then saves it back to MySQL, the revision counter is incremented. Should
the second client also update the document and attempt to write it back to the database, then the database
can compare the revision counter the second client provides with the revision stored in the database and
detect a possible conflict. Please note, this approach requires a cooperative client which does not modify
the revision number.

shell> curl -d '{"_id":"doc_api_overview","_rev":1,"when":
 "2014-09-09 16:35", "title": "API overview",
 "content": "Optimistic locking" }'
 -X PUT
 --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/blog_posts/doc_api_overview'

{
 "info": "Document updated"
}

shell> curl -d '{"_id":"doc_api_overview","_rev":1,"when":
 "2014-09-09 16:35", "title": "API overview",
 "content": "Optimistic locking" }'
 -X PUT
 --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/blog_posts/doc_api_overview'

HTTP methods, headers and status codes

70

{
 "errno": 2000,
 "error": "Update failed. Your revision does not match the current revision"
}

Use a HTTP DELETE request to remove a single document or all documents of a table. If the URL
contains a document identifier, then the named document will be removed.

shell> curl -v
 -X DELETE --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/blog_posts/doc_api_overview'

[...]
* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)
* Server auth using Basic with user 'basic_auth_user'
> DELETE /doc/myhttp/blog_posts/doc_api_overview HTTP/1.1
> Authorization: Basic YmFzaWNfYXV0aF91c2VyOmJhc2ljX2F1dGhfcGFzc3dk
> User-Agent: curl/7.32.0
> Host: 127.0.0.1:8080
> Accept: */*
>
< HTTP/1.1 200 OK
< Connection: Keep-Alive
< Cache-control: must-revalidate
* Server MyHTTP 1.0.0-alpha is not blacklisted
< Server: MyHTTP 1.0.0-alpha
< Content-Length: 28
< Pragma: no-cache
< Content-Type: application/json
<
{
 "info": "Document removed"
}

The DOC endpoint internally maps client requests to SQL statements internally, just like all other endoints
of the HTTP Plugin. SQL sets the limits of the endpoints functionality. Unlike the other endpoints, the DOC
endpoint aims to hide SQL details from the user. For example, it does not return meta data information
about SQL execution results, such as affected_rows but a human readable message like Document
removed instead.

4.5.2 HTTP methods, headers and status codes

The following HTTP headers are set by the DOC endpoint. The headers do not differ from those set by the
SQL endpoint.

Header Description

Server Always given. Can be considered as an API version. For example: MyHTTP
1.0.0-alpha

Cache-control Always given. Always must-revalidate

Pragma Always given. Always no-cache

Content-Length Always given.

Content-Type Set to application/json for 200 OK, 400 Bad Request, 401
Unauthorized. Other replies may or may not contain it.

Connection Always given. Always Keep-Alive.

HTTP methods, headers and status codes

71

The DOC endpoint supports GET, PUT and DELETE requests. Other requests will be rejected with code
405 Method Not Allowed. The reply to such a rejected request contains no content. No error message
is given.

All resources are protected with HTTP basic authentication. Should HTTP basic authentication fail or not
be used with the request at all, the server replies with code 401 Unauthorized and the JSON error
message {"errno":1045, "sqlstate":"28000","error":"401 Unauthorized"}.

The HTTP plugin replies with code 400 Bad Request and no content to any GET, PUT or DELETE
request that has a malformed URL. Valid request URLs depend on the request method. For example, a
GET request URL is malformed if it does not follow the URL pattern: protocol://host:port/doc/
database/table/ or protocol://host:port/doc/database/table/document_id (assuming
myhttp_document_url_prefix=/doc/).

General errors may also return code 400 Bad Request but are accomplished with a JSON error
document that gives more details about the nature of the error.

4.5.2.1 PUT - create tables, insert documents, update documents

The HTTP PUT method can be used to create tables that store documents, to insert documents in such
tables and to replace documents. The URL pattern to create a new table is: protocol:/host:port/
doc/database/table. To create a table, issue a PUT request that follows the URL pattern but do not
send any data with the PUT request to the server. The server will reply with 201 Created and a message
confirming that the table has been created or use code 400 Bad Request followed by an error message
to indicate a failure.

shell> curl -X PUT --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/json_types'

{
 "info": "Table created"
}

shell> curl -X PUT -v
 --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/json_types'

[...]
* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)
* Server auth using Basic with user 'basic_auth_user'
> PUT /doc/myhttp/json_types HTTP/1.1
> Authorization: Basic YmFzaWNfYXV0aF91c2VyOmJhc2ljX2F1dGhfcGFzc3dk
> User-Agent: curl/7.32.0
> Host: 127.0.0.1:8080
> Accept: */*
>
< HTTP/1.1 400 Bad Request
< Connection: Keep-Alive
< Cache-control: must-revalidate
* Server MyHTTP 1.0.0-alpha is not blacklisted
< Server: MyHTTP 1.0.0-alpha
< Content-Length: 47
< Pragma: no-cache
< Content-Type: application/json
<
{
 "errno": 2000,
 "error": "Table already exists."
}

HTTP methods, headers and status codes

72

Creating and droping a table are the only two data definition operations that can be carried out through the
DOC endpoint. A table created by the DOC endpoint has three columns. The primary key is compound of
the columns _id and _rev. The column _id is a VARCHAR(36) and _rev is an unsigned integer. The
HTTP plugin implementation assumes the use of these SQL column types. Do not change them.

CREATE TABLE `json_types` (
 `_id` VARCHAR(36) NOT NULL,
 `_rev` BIGINT(20) UNSIGNED NOT NULL DEFAULT '0',
 `_extra` BLOB NOT NULL,
 PRIMARY KEY (`_id`,`_rev`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8

The DOC endpoint stores JSON documents in the _extra column. Any text column can be used, the
default is BLOB. The maximum length of the _extra column determines the size of the JSON documents
you can store. A BLOB column of an InnoDB table can hold upto 16MB of data. To prevent users from
inserting large documents or to allow storing larger documents, change the column type.

A HTTP PUT request to create a table must not send any data. If any data is send from the client to the
HTTP plugin, the plugin assumes that a new document shall be stored or an existing one is to be replaced.
The URL pattern to insert or replace documents is: protocol://server:port/doc/database/
table/id. Failing to include a document identifier value, results in an error. Like for any other error, the
return code is set to 400 Bad Request.

shell> curl
 -d '{"json_null": null, "json_string": "string",
 "json_number": 123.456, "json_bool": true}'
 -X PUT
 --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/json_types'

{
 "errno": 2000,
 "error": "The request URL must include a document id"
}

The data send together with a PUT request in order to insert or replace a JSON document to the database
must be a valid JSON object. Arbitrary text, any invalid JSON or any JSON that is not an object will be
rejected.

shell> curl
 -d 'No JSON, no fun'
 -X PUT
 --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/json_types/1'

{
 "errno": 2000,
 "error": "Invalid JSON"
}

shell> curl
 -d '[1,2]'
 -X PUT
 --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/json_types/1'

HTTP methods, headers and status codes

73

{
 "errno": 2000,
 "error": "Must be a JSON object"
}

Only a PUT request that follows the URL pattern for inserting or replacing objects and provides a valid
JSON object with the PUT request, results in a new JSON document being added to the database.
Furthermore, the JSON object to be inserted must not contain a top level member of the name _rev. The
presence of a top level _rev member indicates that you want to update an already existing document.

Below is an example of a successful document insertion. The request follows the URL pattern and the PUT
request includes a valid JSON object . The server replies with code 200 OK and a message confirming the
document has been stored.

shell> curl
 -d '{"json_null": null, "json_string": "string",
 "json_number": 123.456, "json_bool": true}'
 -X PUT
 --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/json_types/1'

{
 "info": "Document added."
}

A document to be inserted should not contain a top level member of the name _id. The document
identifier value of a new document is set through the URL only. A top level member of the name _id will be
removed from the JSON object you try to insert. If _id is the only member of the JSON object you attempt
to insert, then the plugin replies with an error message stating that the object is empty, which is because
the _id member was implicitly removed.

shell> curl
 -d '{"_id": "1"}'
 -X PUT
 --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/json_types/2'

{
 "errno": 2000,
 "error": "Empty JSON document"
}

To replace and hereby update a document issue a PUT request with the updated document including
the special document member _rev, which holds the revision of the document. The revision is used for
optimistic locking to detect conflicting updates from different clients. When fetching a document from the
database, the database ensures the document identifier and revision are included in the document as the
_id respectively _rev object members.

shell> curl --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/json_types/1'

{
 "_id": "1",
 "_rev": 1,
 "json_bool": true,
 "json_null": null,

HTTP methods, headers and status codes

74

 "json_string": "string",
 "json_number": 123.456
}

Clients should never change the special _rev member of a document. The database will increment the
revision number when needed, for example, in case of a successful update.

shell> curl -d '{"_id":"1","_rev":1,"msg": "first client" }'
 -X PUT
 --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/json_types/1'

{
 "info": "Document updated."
}

shell> curl --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/json_types/1'

{
 "_id": "1",
 "_rev": 2,
 "msg": "first client"
}

Assume two clients fetch a document to change it. When the first client writes it back to database, the
database compares the revision number with the highest revision number known for the document. If the
clients documents revision number matches, then the client made his changes to the latest version of the
document and the update succeeds. In case of an successful update, the server sends 200 OK together
with a message that confirms the change. As part of the update, the database increases the revision
number. See above for an example.

Should the second client also try to update the document, the database detects that the client based his
updates on a no longer existing revision and rejects the change to avoid overwriting and loosing newer
revisions. It is now up to the second client to solve the conflict, for example, by fetching the latest revision
and trying the update again after merging the revisions.

shell> curl -d '{"_id":"1","_rev":1,"msg": "second client" }'
 -X PUT
 --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/json_types/1'

{
 "errno": 2000,
 "error": "Update failed. Your revision does not match the current revision."
}

The below table summarizes the three actions that can be carried out using the HTTP PUT method.

Action URL Content

Creates a table table. .../doc/database/
table

None

Adds a new document. .../doc/database/
table/id

• Non empty, valid JSON object. Special member
_id not allowed and will be removed prior to
inserting.

HTTP methods, headers and status codes

75

Action URL Content
• JSON object does not have a top level member
_rev. _rev is a reserved special name for the
document revision.

Replaces a document
if the given revision still
exists.

.../doc/database/
table/id

• Non empty, valid JSON object. Special member
_id must match document identifier from the
URL.

• JSON object does have a top level member _rev
which holds the revision number of the document.

4.5.2.2 GET - fetching documents

The DOC endpoint offers key document search capabilities. A HTTP GET request can be used to fetch a
document identified by its identifier value from a table or all documents from a table.

To demonstrate the feature, create a table that holds two documents.

shell> curl -X PUT
 --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/hello'

{
 "info": "Table created."
}

shell> curl -d '{"msg": "Hello"}'
 -X PUT
 --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/hello/first_word'

{
 "info": "Document added."
}

shell> curl -d '{"msg": "world."}'
 -X PUT
 --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/hello/second_word'

{
 "info": "Document added."
}

A GET request following the URL pattern protocol://host:port/doc/database/table/id will
make the HTTP plugin search for a document with the identifiers value id in the table table from the
schema database. If the document exists, it is returned and code 200 OK is used for the HTTP reply.
The returned document differs from the one inserted into the database. It has two additional top level
object properties _id and _rev. The _id member is a string with the document identifier value. The _rev
member is the revision number of the document. The revision is used for optimistic locking. Details are
given with the description of the PUT method.

shell> curl -v --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/hello/first_word'

* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)
* Server auth using Basic with user 'basic_auth_user'
> GET /doc/myhttp/hello/first_word HTTP/1.1

HTTP methods, headers and status codes

76

> Authorization: Basic YmFzaWNfYXV0aF91c2VyOmJhc2ljX2F1dGhfcGFzc3dk
> User-Agent: curl/7.32.0
> Host: 127.0.0.1:8080
> Accept: */*
>
< HTTP/1.1 200 OK
< Connection: Keep-Alive
< Cache-control: must-revalidate
* Server MyHTTP 1.0.0-alpha is not blacklisted
< Server: MyHTTP 1.0.0-alpha
< Content-Length: 45
< Pragma: no-cache
< Content-Type: application/json
<
{
 "_id": "first_word",
 "_rev": 1,
 "msg": "Hello"
}

If the requested document does not exist, the HTTP plugin returns 404 Not Found. No content is sent
with the reply.

shell> curl -v --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/hello/be_magic'

[...]
* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)
* Server auth using Basic with user 'basic_auth_user'
> GET /doc/myhttp/hello/be_magic HTTP/1.1
> Authorization: Basic YmFzaWNfYXV0aF91c2VyOmJhc2ljX2F1dGhfcGFzc3dk
> User-Agent: curl/7.32.0
> Host: 127.0.0.1:8080
> Accept: */*
>
< HTTP/1.1 404 Not Found
< Connection: Keep-Alive
< Cache-control: must-revalidate
* Server MyHTTP 1.0.0-alpha is not blacklisted
< Server: MyHTTP 1.0.0-alpha
< Content-Length: 0
< Pragma: no-cache

A GET request using the URL pattern protocol://host:port/doc/database/table/ returns all
documents from the table in question. If there are any documents in the table, the return code is 200 OK
otherwise it is 404 Not Found.

It is not possible to sort results. Documents will be returned in arbitrary order. The order may may
coincident with the insertion order, as it is the case with the example, but this is a random side effect. Do
not rely on any order.

shell> curl -v --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/hello/'

[...]
* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)
* Server auth using Basic with user 'basic_auth_user'
> GET /doc/myhttp/hello/ HTTP/1.1
> Authorization: Basic YmFzaWNfYXV0aF91c2VyOmJhc2ljX2F1dGhfcGFzc3dk
> User-Agent: curl/7.32.0

HTTP methods, headers and status codes

77

> Host: 127.0.0.1:8080
> Accept: */*
>
< HTTP/1.1 200 OK
< Connection: Keep-Alive
< Cache-control: must-revalidate
* Server MyHTTP 1.0.0-alpha is not blacklisted
< Server: MyHTTP 1.0.0-alpha
< Content-Length: 106
< Pragma: no-cache
<
{
 "hello": [
 {
 "_id": "first_word",
 "_rev": 1,
 "msg": "Hello"
 },
 {
 "_id": "second_word",
 "_rev": 1,
 "msg": "world."
 }
]
}

Note the slash after the table name at the end of the URL pattern. The slash must be included, otherwise
the request is considered invalid. An invalid request results in an empty code 400 Bad Request reply.

shell> curl -v --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/hello'

[...]
* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)
* Server auth using Basic with user 'basic_auth_user'
> GET /doc/myhttp/hello HTTP/1.1
> Authorization: Basic YmFzaWNfYXV0aF91c2VyOmJhc2ljX2F1dGhfcGFzc3dk
> User-Agent: curl/7.32.0
> Host: 127.0.0.1:8080
> Accept: */*
>
< HTTP/1.1 400 Bad Request
< Connection: Keep-Alive
< Cache-control: must-revalidate
* Server MyHTTP 1.0.0-alpha is not blacklisted
< Server: MyHTTP 1.0.0-alpha
< Content-Length: 0
< Pragma: no-cache
< Content-Type: application/json
<

Please note, the HTTP plugins DOC endpoint does not check the structure of the tables it works with.
Trying to fetch documents from a table that does not exist or does not have the required columns to store
and read documents returns an error with code 400 Bad Request:

shell> curl --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/simple/'

{
 "errno": 1054,

HTTP methods, headers and status codes

78

 "error": "Unknown column '_id' in 'field list'"
}

The DOC endpoint also does not validate the data it reads. Using a standard MySQL client and SQL, it is
possible to manipulate the contents of a document table in an arbitrary way. For example, one could use
SQL to insert other data but JSON. A read request issued through the DOC endpoint will not validate the
contents and forward them to the client. However, no such problems occur when only the DOC endpoint is
used to manipulate documents.

The following table summarizes the GET method features:

Action URL Notes

Fetch one document. .../doc/database/
table/id

Fetches document id. Returns 404 Not Found if
the document is not found, otherwise 200 OK.

Fetch all documents from
a table.

.../doc/database/
table/

The result set format is described below. Note the
mandatory slash after the table name in the URL
pattern.

4.5.2.3 GET - Utility commands

HTTP GET requests can also be used to execute utility commands. The URL pattern for utility commands
is: protocol://host:port/doc/_command. The HTTP Plugin preview version features one command:

Action URL Notes

Generate unique
identifiers

.../doc/_uuids Supports a count parameter. Returns JSON
resultset.

The _uuids command returns between 1 and 100 unique identifiers. The unique identifiers can be used
when inserting new documents into the database. To do so, a client asks for a list of identifiers and then
uses them to create the URL for inserting new documents. The HTTP Plugin generates identifiers using the
MySQL SQL function UUID(). Please, see the function description for details.

shell> curl -v --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/_uuids'

[...]
* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)
* Server auth using Basic with user 'basic_auth_user'
> GET /doc/_uuids HTTP/1.1
> Authorization: Basic YmFzaWNfYXV0aF91c2VyOmJhc2ljX2F1dGhfcGFzc3dk
> User-Agent: curl/7.32.0
> Host: 127.0.0.1:8080
> Accept: */*
>
< HTTP/1.1 200 OK
< X-jsonp-escape: false
< Connection: Keep-Alive
< X-jsonp:
< Cache-control: must-revalidate
* Server MyHTTP 1.0.0-alpha is not blacklisted
< Server: MyHTTP 1.0.0-alpha
< Content-Length: 50
< Pragma: no-cache
< Content-Type: application/json
<
{
 "uuids": [

HTTP methods, headers and status codes

79

 "4de304bb-3d91-11e4-8e1c-000c2940576d"
]
}

The function returns one unique identifier by default. The URL parameter count can be added to request
a different number. The valid range for the parameter is from 1 to 100. Values outside of the range will be
silently ignored and limited to the minimum respectively maximum allowed value.

shell> curl --user basic_auth_user:basic_auth_passwd --url 'http://127.0.0.1:8080/doc/_uuids?count=3'

{
 "uuids": [
 "234abd93-3d92-11e4-8e1c-000c2940576d",
 "234ac427-3d92-11e4-8e1c-000c2940576d",
 "234ac909-3d92-11e4-8e1c-000c2940576d"
]
}

The reply code for valid _uuids command requests is always 200 OK.

4.5.2.4 DELETE - removing tables and documents

The DOC endpoint removes documents when it receives a valid HTTP DELETE request. Depending
on the URL pattern, the request will cause the deletion of one document or drop the table and with it all
documents.

The URL pattern for removing a single document identified by id stored in the table table from the
schema database is protocol://host:port/doc/database/table/id. If the document is
found, the HTTP plugin replies with 200 OK and a message that confirms the removal. If the document is
unknown, an empty reply with code 404 Not Found is send. An invalid URL pattern causes a code 400
Bad Request reply with no content.

shell> curl --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/hello/second_word'

{
 "_id": "second_word",
 "_rev": 1,
 "msg": "world."
}

shell> curl -v -X DELETE
 --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/hello/second_word'

[...]
* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)
* Server auth using Basic with user 'basic_auth_user'
> DELETE /doc/myhttp/hello/second_word HTTP/1.1
> Authorization: Basic YmFzaWNfYXV0aF91c2VyOmJhc2ljX2F1dGhfcGFzc3dk
> User-Agent: curl/7.32.0
> Host: 127.0.0.1:8080
> Accept: */*
>
< HTTP/1.1 200 OK
< Connection: Keep-Alive
< Cache-control: must-revalidate
* Server MyHTTP 1.0.0-alpha is not blacklisted

HTTP methods, headers and status codes

80

< Server: MyHTTP 1.0.0-alpha
< Content-Length: 28
< Pragma: no-cache
< Content-Type: application/json
<
{
 "info": "Document removed"
}

shell> curl -v -X DELETE
 --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/hello/second_word'

* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)
* Server auth using Basic with user 'basic_auth_user'
> DELETE /doc/myhttp/hello/second_word HTTP/1.1
> Authorization: Basic YmFzaWNfYXV0aF91c2VyOmJhc2ljX2F1dGhfcGFzc3dk
> User-Agent: curl/7.32.0
> Host: 127.0.0.1:8080
> Accept: */*
>
< HTTP/1.1 404 Not Found
< Connection: Keep-Alive
< Cache-control: must-revalidate
* Server MyHTTP 1.0.0-alpha is not blacklisted
< Server: MyHTTP 1.0.0-alpha
< Content-Length: 0
< Pragma: no-cache
<

A HTTP DELETE request to drop a table must match the URL pattern protocol://host:post/doc/
database/table/. If the table to be dropped exists and the user has access to it, the DOC endpoint
replies to a DELETE request with code 200 OK and an info message confirming the removal of the table.
An attempt to drop an already dropped table results in a code 404 Not Found reply with an empty body.

shell> curl -v -X DELETE
 --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/hello'

[...]
* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)
* Server auth using Basic with user 'basic_auth_user'
> DELETE /doc/myhttp/hello HTTP/1.1
> Authorization: Basic YmFzaWNfYXV0aF91c2VyOmJhc2ljX2F1dGhfcGFzc3dk
> User-Agent: curl/7.32.0
> Host: 127.0.0.1:8080
> Accept: */*
>
< HTTP/1.1 200 OK
< Connection: Keep-Alive
< Cache-control: must-revalidate
* Server MyHTTP 1.0.0-alpha is not blacklisted
< Server: MyHTTP 1.0.0-alpha
< Content-Length: 25
< Pragma: no-cache
< Content-Type: application/json
<
* Connection #0 to host 127.0.0.1 left intact
{
 "info": "Table dropped"
}

JSON content formats

81

The DOC endpoint sends and empty reply with code 404 Not Found if you try to remove a document
from an already dropped table. No hint is given that the table does not exist. Judging from the reply only,
a client cannot distinguish this case from an attempt to delete a non-existing document from an existing
table.

Invalid DELETE requests or requests that cause errors during their cause code 400 Bad Request
answers. Clients should be prepared to handle errors.

shell> curl -v -X DELETE --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/not_allowed/db_and_table'

[...]
* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)
* Server auth using Basic with user 'basic_auth_user'
> DELETE /doc/not_allowed/db_and_table HTTP/1.1
> Authorization: Basic YmFzaWNfYXV0aF91c2VyOmJhc2ljX2F1dGhfcGFzc3dk
> User-Agent: curl/7.32.0
> Host: 127.0.0.1:8080
> Accept: */*
>
< HTTP/1.1 400 Bad Request
< Connection: Keep-Alive
< Cache-control: must-revalidate
* Server MyHTTP 1.0.0-alpha is not blacklisted
< Server: MyHTTP 1.0.0-alpha
< Content-Length: 101
< Pragma: no-cache
< Content-Type: application/json
<
* Connection #0 to host 127.0.0.1 left intact
{
 "errno": 1044,
 "error": "Access denied for user 'http_sql_user'@'127.0.0.1' to database 'not_allowed'"
}

Action URL Notes

Delete a document. .../doc/database/
table/id

Deletes the document id. Returns 404 Not
Found if the document was not found, otherwise
200 OK.

Drop a table. .../doc/database/
table/

Returns 200 OK if the table was found and
dropped. Returns 404 Not Found if the table does
not exist.

4.5.3 JSON content formats

The DOC endpoint sends a JSON object in reply to all valid requests. The JSON object has one of three
formats. There are resultsets, error messages and info messages.

REPLY:
 jsonp_function(answer) |
 answer

jsonp_function:
 string

answer:
 resultset |

JSON result document

82

 error |
 info |
 uuids

All JSON documents returned are simple, lightweight and easy to parse. Their size is comparable to the
documents returned by the CRUD endpoint. They are smaller than those returned by the SQL endpoint, for
example, because the resultsets do not contain any meta data information related to the underlying SQL
storage. Please note that JSON unicode encoding for special characters can significantly grow the storage
requirements of your documents. Documents are stored "as-is". They are not serialized into any kind of
binary format for storage.

Different requests cause different replies and reply formats. Clients can consider their request and the
return code to determine what kind of JSON document to expect in reply, if any. The following table gives
and overview.

HTTP return code Content Methods Details

401 Unauthorized Error document All Wrong HTTP basic
authentication credentials

400 Bad Request Error document All Check error message.

405 Method Not Allowed No content Any but GET, PUT,
DELETE

200 OK Result document GET In reply to read
documents

200 OK UUIDs document GET In reply to _uuids
command

200 OK Info document PUT used to insert or
replace documents,
DELETE

201 Created Info document PUT used for table
creation

404 Not Found No content GET, DELETE

4.5.4 JSON result document

The DOC endpoint resultset contains one or more JSON documents, depending on the request used. If the
client request has generated multiple documents, the resultset is a document list. The document list holds
all the documents produced. A document list is a JSON object with one member. The members name is
the table from which the documents have been fetched. The member value is an array of documents.

resultset:
 document_list |
 document

document_list:
{
 "table_name":
 [
 document (, document ...)
]
}

document:
{

JSON error document

83

 "_id" : document_id,
 "_rev" : revision,
 user_input
}

document_id: string
revision: number

user_input:
 member : value
 (, member : value ...)

A document from a resultset is an enriched variant of the document stored in the database. The document
contains all data once stored in the database plus two additional top level members. The special member
_id holds the document identifier value. It is always a string. The special member _rev is the revision
number of the document.

Resultsets can be expected in reply to a GET request if the return code is 200 OK

4.5.5 JSON error document

Clients can expect error documents when the return code is 400 Bad Request or 401 Unauthorized.
Errors may be returned in reply to any valid request method. The error document is a JSON object with two
members: errno, error.

error:
{
 "errno": int,
 "error": string
}

The error number errno and the error description error may match MySQL server error codes and
messages. All HTTP plugin endpoints use SQL internally to carry out their work. In some cases the DOC
endpoint may copy SQL error messages into the error document. In other cases, it sets its own error code
and message.

shell> curl -X PUT
 --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/unkown_db/unknown_table'

{
 "errno": 1044,
 "error": "Access denied for user 'http_sql_user'@'127.0.0.1' to database 'unkown_db'"
}

4.5.6 JSON info document

The info document contains a short message which confirms the execution of the a request. It is sent in
reply to PUT and DELETE requests if the return code is 200 OK or 201 Created.

info:
{
 "info": string,
}

Below is an example of the message returned in reply to a successful table creation. The message itself
adds no information to the reply because the client can determine the outcome of the request from the

JSON UUIDs document

84

return code 201 Created. The info document is an alternative and convenient way to inform the client of
a request outcome without having to check the result code which may not be always possible.

shell> curl -X PUT
 --user basic_auth_user:basic_auth_passwd
 --url 'http://127.0.0.1:8080/doc/myhttp/new_table'

{
 "info": "Table created"
}

4.5.7 JSON UUIDs document

The special command _uuids returns a UUID document with one or more unique identifiers. The returned
JSON object has one property called uuids. The object member holds a list of strings, which are the
unique identifiers.

uuids:
{
 "uuids":
 [
 string (, string ...)
]
}

	HTTP Plugin for MySQL
	Table of Contents
	Chapter 1 Overview
	Chapter 2 Basic concepts
	2.1 How it works
	2.2 Security compared with a web service
	2.3 User concept
	2.4 Thread model

	Chapter 3 Installation
	3.1 Plugin Installation
	3.2 Example setup and data
	3.3 Configuration server variables

	Chapter 4 User APIs (endpoints)
	4.1 Feature comparison
	4.2 Common properties
	4.3 The SQL endpoint: /sql/
	4.3.1 API overview
	4.3.2 HTTP methods, headers and status codes
	4.3.3 JSON with padding (JSONP)
	4.3.4 JSON content formats
	4.3.4.1 JSON result document
	4.3.4.2 JSON error document

	4.3.5 JavaScript examples: basics, jQuery, Dojo
	4.3.5.1 Introduction and general notes
	4.3.5.2 JavaScript framework examples
	jQuery
	Dojo Toolkit

	4.3.6 Limitations and pitfalls

	4.4 The CRUD endpoint: /crud/
	4.4.1 API overview
	4.4.2 HTTP methods, headers and status codes
	4.4.3 JSON with padding (JSONP)
	4.4.4 JSON content formats
	4.4.5 JSON result document
	4.4.6 JSON error document
	4.4.7 JSON status document
	4.4.8 Commandline examples
	4.4.9 JavaScript examples: basics, AngularJS
	4.4.9.1 Reading records with AngularJS and JSONP

	4.5 The JSON document (DOC) endpoint: /doc/
	4.5.1 API overview
	4.5.2 HTTP methods, headers and status codes
	4.5.2.1 PUT - create tables, insert documents, update documents
	4.5.2.2 GET - fetching documents
	4.5.2.3 GET - Utility commands
	4.5.2.4 DELETE - removing tables and documents

	4.5.3 JSON content formats
	4.5.4 JSON result document
	4.5.5 JSON error document
	4.5.6 JSON info document
	4.5.7 JSON UUIDs document

