

MySQL 5.7 Fabric:
High Availability and Sharding

Ulf Wendel, MySQL/Oracle

The speaker says...

MySQL is under pressure by NoSQL solutions. For OLTP
workloads the pressure is on:
• Easy to use, built-in high availability
• Easy to use, elastic, horizontal scaling for the cloud
• Attractive data models and drivers for developers

MySQL 5.7 introduces a High Availability and
Sharding solution called Fabric – of course, it is Open
Source and freely abailable. Similarities with MongoDB
cannot be overseen, but Fabric is different. However, we
start with a short recap on database clusters before we dive
into MySQL Fabric.

Availability
• Cluster as a whole unaffected by loss of nodes

Scalability
• Geographic distribution

• Scale size in terms of users and data

• Database specific: read and/or write load

Distribution Transparency
• Access, Location, Migration, Relocation (while in use)

• Replication

• Concurrency, Failure

Goals of distributed databases

The speaker says...

A distributed database cluster strives for maximum
availability and scalability while maintaining distribution
transparency. MySQL Cluster has a shared-nothing design
good enough for 99,999% (five minutes downtime per
year). It scales from Rasperry Pi run in a briefcase to 1.2
billion write transactions per second on a 30 data nodes
cluster (if using possibly unsupported bleeding edge APIs.)
It offers full distribution transparency with the exception of
partition relocation to be triggered manually but performed
transparently by the cluster.

On the other end of the distribution transparency scale is
MySQL Replication. Why two products?

Where are transactions run?

Primary Copy Update Anywhere

When does
synchronization
happen?

Eager
Not available for

MySQL
MySQL Cluster

3rd party

Lazy
MySQL Replication

3rd party
MySQL Cluster

Replication

What kind of cluster?

The speaker says...

A wide range of clusters can be categorized by asking
where transactions are run and when replicas
synchronize their data. Any eager solution ensures that all
replicas are synchronized at any time: it offers strong
consistency. A transaction cannot commit before
synchronization is done. Please note, what it means to
transaction rates:
• Single computer tx rate ~ disk/fsync rate
• Lazy cluster tx rate ~ disk/fsync rate
• Eager cluster tx rate ~ network latency (RTT)

Test: Would you deploy a synchronous (eager) cluster on a
WAN, or prefer using an asynchronous (lazy) solution?

Lazy Primary Copy

010101001011010
101010110100101
101010010101010
101010110101011
101010110111101

Primary/Master

Write

Secondary/Slave Secondary/Slave Secondary/Slave

Read

Read

Lazy synchronization: eventual consistency

Primary Copy: where any transaction may run

The speaker says...

MySQL Replication falls into the category of lazy Primary
Copy clusters. It is a rather unflexible solution as all
updates must be sent to the primary. However, this
simplifies concurrency control of conflicting, concurrent
update transactions. Concurrency control is no different
from a single database. Lazy replication can be fast.
Transactions don't have to wait for synchronization of
replicas. The price of the fast execution is the risk of stale
reads and eventual consistency. Transactions can be
lost when the primary crashes after commit and before any
copy has been updated. (Workaround: MySQL semi-sync
replication, which delays the commit until delivery to copy.
Alternatively, use shared disk and standby.)

Read but not write scale out

010101001011010
101010110100101
101010010101010
101010110101011
101010110111101

Primary/Master

Write

Secondary/Slave Secondary/Slave Secondary/Slave

Read

Read

Read Read

The speaker says...

Primary copy is best suited for read dominated
workloads, as commonly found in web applications. Write
scale out is not possible. Eager update anywhere
solutions offer some write scale out because writes can
execute in parallel on multiple nodes but must then be
synchronized for commit (commit rate ~ network latency).
Partial replication is the only way to scale writes.
Every write adds load to the entire cluster, regardless
whether concurrency control involes all replicas (ROWA), or
a good number of them (Quorum). Every additional replica
adds load to all others. The solution is to partition the data
set and keep each partition on a subset of all replicas only.
See MySQL Cluster or NoSQL.

Availability
• Shared-nothing, High Availability (99,999%)

• WAN Replication to secondary data centers

Scalability
• Read and write through partial replication (partitioning)

• Distributed queries (parallize work), real-time guarantees

• Focus In-Memory with disk storage extension

• Sophisticated thread model for multi-core CPU

• Optimized for short transaction (hundrets of operations)

Distribution Transparency
• SQL level: 100%, low-level interfaces available

MySQL (NDB) Cluster

The speaker says...

MySQL Cluster uses partial replication for read and write
scale out. It follows a hybrid system design and offers
eager update anywhere: each node can answer read and
writes questions. Replication is synchronous. Tables are
automatically partitioned. The sharding is transparent at
SQL level. Originally developed and optimized for Telco
applications, Cluster never gained the popularity of InnoDB
for web applications. NDB ain't InnoDB, and Jo Doe
voted InnoDB for the web.

With classic MySQL Replication and InnoDB hitting the write
scale out limit, MySQL Fabric was born: middleware
based sharding for MySQL.

Availability
• Primary Copy with external heartbeats

• Automatic MySQL 5.6.10+ GTID based failover/switchover

• Vision: zero transaction loss (semi-synch replication)

Scalability
• Read scale out through slaves/copies

• Read and write scale out using table based sharding

• (Nodes and shard administration)

Distribution Transparency
• Low, and no area of focus

• Some Java, Python and – most limited - PHP driver support

MySQL Fabric = Replication++

The speaker says...

MySQL Fabric 0.3 pre-production is a super-sized
management tool for MySQL Replication. Thus, it inherits all
major MySQL Replication properties. Only addition:
horizontal partitioning (sharding). Technically, the initial
version is barely more than a set of Python scripts. Look
beyond, note the change in thinking, grasp the ideas.
Stay tuned for critique. Years after it has become
mainstream, MySQL Replication learns sharding for
read and write scale out. Welcome back, old lady Sakila
(MySQL dolphin/mascot)! It is the first time ever that
MySQL ships MySQL Replication HA out of the box. It
is the first time ever that MySQL aims to automate
management of nodes.

Middleware Replication++

Primary/Master

Secondary/Slave Secondary/Slave Secondary/Slave

Lazy synchronization: eventual consistency

Backing Store

MySQL Fabric

(Master) Group

Group (Shard) Group

The speaker says...

Basics first. MySQL Fabric is daemon for managing
farms of MySQL servers. Farms consist of „groups“. A
group either consists of any number of individual MySQL
servers, or holds a MySQL Replication cluster. A group
describing a replication cluster consists of a master and any
number of slaves, as ever since.

MySQL Fabric can setup, administrate and monitor
groups. Once a MySQL Server has been installed, Fabric
can take care of the replication setup details. DBAs might,
for example, use virtual machine images to add new MySQL
Servers, whenever needed. Then, Fabric is used to integrate
those servers into the replication cluster. For example,
integrating a new node boils down to one line on the
CLI. More later, it is getting better.

Middleware Replication++

Primary/Master

Secondary/Slave Secondary/Slave Secondary/Slave

Lazy synchronization: eventual consistency

Backing Store

MySQL Fabric

(Master) Group

Group (Shard) Group

The speaker says...

Basics first. MySQL Fabric is daemon for managing
farms of MySQL servers. Farms consist of „groups“. A
group either consists of any number of individual MySQL
servers, or holds a MySQL Replication cluster. A group
describing a replication cluster consists of a master and any
number of slaves, as ever since. MySQL Fabric can setup,
administrate and monitor groups. Once a MySQL Server
has been installed, Fabric can take care of the replication
setup details. DBAs might, for example, use virtual machine
images to add new MySQL Servers, whenever needed.
Then, Fabric is used to integrate those servers into the
replication cluster. For example, integrating a new node
boils down to one line on the CLI. More later...

A classic setup

Primary/Master

Secondary/Slave

Secondary/Slave

Secondary/Slave

Backing Store

MySQL Fabric

(Master) Group

Running

Offline

Spare

Secondary/Slave
Recovering

Running

The speaker says...

A most basic farm managed by Fabric might contain only
one master group. A master group is a logical name for
a number of servers belonging to a standard MySQL
Replication cluster.

The servers in the master group are in one of five
operational states: running, spare, offline, faulty and
recovering. Fabric aware drivers send questions to running
servers only. Spare servers pariticipate in replication but do
not handle queries until turned online. Spare servers shall
help to quickly grow groups, for example, during periods of
peak loads.

Availability: automatic failover

Primary/Master

Copy/Slave Copy/Slave Copy/Slave

MySQL Fabric

(Replication) Group

Backing Store

Heartbeat Heartbeat

Heartbeat

Heartbeat

The speaker says...

Failure detectors can be used to detect node failures. The
built-in failure detector uses heartbeats. If a master fails,
automatic failover can be performed. The system will search
for the most up-to date slave, promote it to the new master
and reconfigure all remaining nodes to start replicating from
the new master. Failover is based on MySQL 5.6+ GTID
logic, which means you have to use MySQL 5.6.10 or newer.

Clients can ask MySQL Fabric for a list of nodes. Hence,
they can deploy themselves and automatically explore
nodes. A long lasting Connectors team dream to improve
distribution transparency comes true. More below.

Scalability: sharding

Primary/Master

Slave Slave

MySQL Fabric

Shard Group: shard1

Backing Store

Master

Slave

Shard Group: shard2

shard_key column

1 Abkhazia

2 Afghanistan

shard_key column

11 Azerbaijan

12 Bahamas

Setup, Monitor Split, Merge, Move

RANGE,
HASH,

LIST etc

The speaker says...

Fabric supports range, hash or list based partitioning of
tables using one column as a shard key. Each partition is
assigned to a logical shard group, short: shard. Recall, a
group consists of an individual server, or forms a replication
cluster in itself.

There are Fabric commands for defining the sharding rules
(shard mappings), for assigning nodes to shards, for
populating shards from unsharded database servers, for
splitting shards, for merging shards, and for moving shards.

Clients can ask MySQL Fabric for a list of nodes and
sharding rules. Given a shard key, clients can route requests
to the appropriate servers.

Schema updates, global tables

Slave/Primary

Slave Slave

Slave/Primary

Slave

Shard Group: Shard_2

Primary

Global Group

Shard Group: Shard_1

id cur rate

1 USD 1.3531

id cur rate

1 USD 1.3531

id cur rate

1 USD 1.3531

The speaker says...

A global group can be defined to replicate global tables to
all shards and to manage schema changes to partitioned
tables. Updates to global tables and DDL operations on
partitioned tables are performed on the global group. Then,
all shards replicate from the global group to copy the
changes.

Clients ask Fabric where to send global updates and route
their requests to the appropriate servers.

The DBAs view on Fabric

New mysqlfabric command line tool

• Central administration tool

• Easy for you to integrate in your favourite deployment tool

• Easy for us to integrate into our admin/management GUIs

Extensible HTTP XML RPC interface

• No SSH access required for remote deployment

• Power users may add custom commands long term

Self-deploying clients

• Use „fabric aware“ drivers, or improve your clients

The speaker says...

A major goal was to create an extensible, flexible base
which integrates smoothly in existing deployments. We
currently do not offer integration in our own free GUI
administration tool MySQL Workbench and our own
commercial GUI management tool MySQL Enterprise
Monitor. However, look at the architecture and draw your
own conclusions.

As I expect mostly developers not DBAs reading this, and
the pre-production release tends to use basic methods of
performing actions (3rd-party: Call for Patches and Branches
is open ;-)) , I skip further details.

Replication with auto failover
> # Install MySQL servers, edit Fabric config, setup
MySQL backing server for Fabric

> mysqlfabric manage start

> # Create group to manage master/slave replication

> mysqlfabric group create my_master_group

> # Assign servers to master group

> mysqlfabric group add my_master_group mysql_host
mysql_user mysql_password

> …

> # Choose primary, start replication

> mysqlfabric group promote my_master_group

> # Add heartbeating for automatic failover

> mysqlfabric group activate my_master_group

The speaker says...

The slide shows an example of setting up a standard MySQL
Replication with heartbeating and automatic failover.
Compared with MongoDB replica set deployment:

 MongoDB MySQL

1) Setup mongod's Setup mysqld's

2) On any node,
create replica set

Using mysqlfabric,
create master group

3) On primary,
add secondaries

Using mysqlfabric,
add nodes, choose primary

4) Built-in failure detector
automatically activated

Choose failure detector,
activate. E.g., use built-in.

Server setup for sharding
> # Create one shard group per partition, add servers

> mysqlfabric group create shard1

> mysqlfabric group add shard1 host user password

> …

> # Define sharding rules/mapping

> mysqlfabric sharding define RANGE s1_tmp

> # Which table to shard and by what column

> mysqlfabric sharding add_mapping 1 db.table column

> # Connect shard group with mapping rules

> # Group shard1 shall be used to hold db.table

> # with shard key column and values 1...100

> mysqlfabric sharding add_shard 1 1 100 shard1
enable

The speaker says...

Setting up sharing takes a bit longer as you have to grasp
the relation between a global group, shard mapping and
shards. Compared with MongoDB shard deployment:

 MongoDB MySQL

1) Setup mongod's Setup mysqld's

2) Create shards: single
mongod or replica set

Create shard group: single
mysqld or replication

3) If sharding for
collection: define key
for db.collection

Create mapping: define key for
db.table

4) Add shards to cluster,
set distribution details

Add shards to cluster, set
distribution details

How fabric aware clients tick...

Fabric Core

HTTP XML RPC
SlaveMaster

Fabric aware driver

connect('fabric');
set('group=...');

begin_trx(READ_WRITE);

Application

dump_servers() Lazy connection

The speaker says...

Fabric aware drivers communicate with Fabric to
learn about master groups, shard groups, global groups and
their nodes. Application developers think in terms of
groups instead of individual servers.
If, for example, an application requests use of a master
group, the driver asks Fabric for a list of all nodes
using the dump_servers() XML RPC call. Then, it
returns a connection handle to the application. At this point,
no connection to any MySQL server has been established
yet. The driver uses lazy connections to delay the actual
connect until it knows about the transaction/query to choose
an appropriate server. In the example, the master would be
used to run a read-write transaction.

Client failover – in theory..
Application Driver Fabric Node

connect('fabric')

dump_*()

Lazy connection handle

set('group...')

begin_trx(READ_ONLY)

Find node

Connect

Find alternative and/or ask Fabric

The speaker says...

Assuming a Fabric aware driver recognizes a node failure
when not in the middle of a transaction, the driver can
automatically pick an alternative node without raising
an application error. The driver knows about possible
alternatives. Additionally, the driver can hint Fabric
that a node has failed. If no alternative is available, the
driver might want to ask Fabric for an updated list of
nodes to deploy itself. Maybe, in the case of a master
failure, Fabric fixed the problem already and has promoted a
slave to be the new master. Then, failover and
reconfiguration would be transparent from an applications
point of view. At the time of writing, only Python
supports this – in parts!

Client failover – today

Virtual IP

• Clients use virtual IP, virtual IP moved during failover

• Often used for masters only

Automated client configuration deployment

• Server monitoring tool deploys client configuration

• Example with PHP and 3rd party MHA (Master High Availability
Manager tool): http://blog.ulf-wendel.de/2013/peclmysqlnd_ms-
let-mha-update-your-client-configs/

The speaker says...

MySQL Failover with zero, manual client deployment
is possible already. It is, however, usually restricted to
master failover, and there is no out-of-the box solution.

A true classic is using a virtual IP. Clients connect to the
MySQL master through a virtual IP. In case of a MySQL
master failover – or, planned switchover -, the DBA moves
the virutal IP from one server to another. The change is
transparent to the clients.

A pattern similar to MySQL Fabric is also possible using a
MySQL monitor tool to deploy client configuration files.

Ex-bound shard key
Application Driver Fabric Shard

connect('fabric')

dump_*()

Lazy connection handle

set('shard=table,column,key')

begin_trx(READ_ONLY)

Find node

Connect

BEGIN

The speaker says...

Sharding works very similar.

The application connects to Fabric instead of connecting to
an individual server, and the driver learns about the nodes
in the server farm. Then, the application hints the driver to
choose a shard (node). At this point the driver establishes a
connection to the node – if none exists – and routes the
requests to it.

MySQL Manual Myth Buster
PHP using mysqlnd mysqlnd_ms Config Node

connect('my_cluster')

init()

Lazy connection handle

query([/* (shard) group*/]...)

begin_trx(READ_ONLY)

Find node

Connect

BEGIN

The speaker says...

After studying the MySQL manual you might believe, the
client part is an all new, sensational invention. Myth!
Think PECL/mysqlnd_ms (04/2011) with a config stored
on an network server instead on the local file system. The
current, pre-production version of Fabric lacks:

• state alignment for lazy connections (09/2011)
• quality of service concept: consistency abstraction,

maximum age and result caching, ... (11/2011)
• weigthed load balancing, locality support (07/2012)

We still lack server support for these. Will we get it ;-) ?

MMM Buster!

To utilize Fabric in your application, you must have
a Fabric aware connector installed on the system
where the application is run […] Fabric aware connector:
• Connector/Python 1.1.1a2 or later

• Connector/J 5.1.26 or later

True or false?

• Of course, you could do the XML RPC yourself

• Sometimes, there is no Fabric aware connector

• The XML RPC interface is rather simple to use

The speaker says...

The reasoning behind this statement is crystal clear.
Distributed database designs with low distribution
transparency, can improve the developers experience using
intelligent load balancers. For example, using a driver
integrated load balancer. There are valid reasons for low
distribution transparency.
PECL/mysqlnd_ms came with two messages:
• using any MySQL cluser becomes easy, and the

documentation shows usage and algorithm
• all default decisions can be overruled

Following educate and enable users: Fabric can be used –
less comfy – without special driver from MySQL.

MMM Buster!

A master group is a group of servers that together work
to provide a high-availability master using reundancy. In
the master group, one of the servers is the primary, while
the others are secondaries. As long as the primary is
alive and running, it will handle all the queries, while
the secondaries replicate everything from the
primary to keep up to date.

True or false?

• Sometimes people say: query (write), question (read)

• No, Fabric is not about scale in

• Load shall be spread over all runing nodes of any kind

The speaker says...

I am no native english speaker. Is it me only who has to
smile when reading secondaries (slaves) do not participate
in handling queries? Research literature makes a distinction
between queries (write) and questions (read). Of course,
client load shall distribute over all running nodes of
any kind. In general, I find the manual a bit hard to
understand as it sometimes uses – correctly – different
terms for basically the same thing. Same for my
presentation, which sticks to Fabric wording. Compare with:

Replication enables data from one MySQL database server
(the master) to be replicated to one or more MySQL
database servers (the slaves).

Performance considerations
Application Driver Fabric

connect('fabric')

dump_*()

Connection handle

Store

Listener

queue()

Executor

Future: asynch

Today: synch

BEGIN

COMMIT

~20 queries

HTTP

Python

The speaker says...

Fabric HTTP XML RPC is expensive. Remote procedure calls
add latency to applications using Fabric. HTTP and XML are
verbose protocols not optimized for performance. Multiple
HTTP listeners and executors can be configured to scale
Fabric on multi-core systems. However, Fabric is written in
Python, and Python is not the fastest programming
language.

A MySQL database is used by Fabric as a backing store to
persist state. Don't nail me on when exactly Fabric persists
state. If you set the Fabric log level to Info, you can see the
queries run. Given this architecture, the Fabric RPC rate is
less or equal to the maximum transaction rate of the
backing store.

Clients must use caches
Application Driver Fabric

connect('fabric')

dump_*()

Connection handle

Store

...

TTL=nsynchronous
...

Python

Cache

cached()

Connection handle

cached()

HIT

MISS

The speaker says...

To reduce latency clients should use pooled connections,
and must cache XML RPC responses.

XML RPC response caches must use time-to-life expiration
policy. The TTL is given by Fabric. The TTL is in the
response of some calls, for example, all dump_*() calls.

Caching also helps to prevent Fabric server overload.

Will it scale?

Primary/Master

Slave Slave

MySQL Fabric

Shard

Backing Store

Master

Slave

Shard

Master Slave

Global Group

Shard

Master

Slave

Webserver (FPM)

PHP PHP PHP PHP PHP
E.g. 180 PHP caches expire

The speaker says...

There is a possibility that clients overload - the initial
version of – Fabric. Assume you have a sharding setup with
three shards and one global group, say 9 MySQL servers in
total. Say4 webservers running each 5 PHP FPM processes
per MySQL server. This is no figure picked out of the air but
a ratio seen at a small web agency mostly deploying
standard PHP solutions. This gives you 180 PHP processes.
The best built-in cache store for a PHP driver is process
memory. Means, up to 180 PHP caches could expire
concurrently causing 180 concurrent XML RPC requests.

Assuming such a cluster consisting of machines like
my notebook, Fabric became too slow. Note, I'm
extrapolating, I make a guess and its pre-production...

It will scale – in the future

Primary/Master

Slave Slave

MySQL Fabric

Shard

Backing Store

Master

Slave

Shard

Master Slave

Global Group

Shard

Master

Slave

MySQL Fabric

Backing Store

MySQL Fabric

Backing Store

The speaker says...

MySQL was brave enough to release an initial version of a
high availability solution where a Single Point of Failure
(Fabric) monitors another SPOF (Primary/Master) to achieve
high availability. Ha? Yes... Of course, SPOF cannot cure a
SPOF!

The Fabric design supports running it as a replicated state
machine (RSM). Replicated state machine is a chewy term
that opens up for many options ranging from using a group
communication system, raw Paxos or a synchronous,
replicated database like MySQL Cluster as a backing store.

Caching I_S Plugin

My vote: hierachical cache

Any Node

MySQL Fabric

Any Group

Backing Store

Client

XML RPC SQL

1 Fabric Say, 9x MySQL Say, 180x PHP

Cache

SELECT * FROM STORE_DUMP_SERVERS
WHERE pattern = '' AND version = 0

The speaker says...

The potential PHP Fabric overload scenario has much to do
with the potential default cache medium of a Fabric aware
PHP driver. The best, default cache medium is process
memory. Reuse of cache entries is low, so is sharing. As a
result, there are many XML RPC requests. A hierachical
cache would reduce the number of XML RPC requests. Every
MySQL server could run an Information Schema plugin
which performs the XML RPC when a client issues a
corresponding SQL query and cache the results.
Futhermore, clients would not have us learn a new protocol.
They would run simple SQL statements. BTW, PoC
synchronous I_S tables with node lists: http://blog.ulf-
wendel.de/2013/mini-poc-using-a-group-communication-
system-for-mysql-ha/

Compared with: Spider
MySQL

InnoDB Memory

Storage Engine

Optimizer

Federated

Parser, ...

Spider

File(s) RAM Remote DB

MySQL MySQL

Partition Partition

The speaker says...

Spider is a 3rd party storage engine for MySQL. Recall, that
any database table in MySQL can be created using a variety
of storage engines optimized for different purposes.
Different storagen engines store tables on different media.
InnoDB uses files, Memory uses RAM, Federated links to a
remote database. Spider stores tables on remote MySQL
servers and allows partitioning (sharding) of over multiple
remote MySQL servers. Distribution transparency is better
with Spider than with Fabric: clients use a standard SQL
table, MySQL takes care of the distribution over multiple
servers. Queries may spawn multiple shards, so may
transactions (XA). Good parallelization of work too.
However, no HA and no cluster management tool.

Compared with: MySQL Cluster

NDB Data Node 1 NDB Data Node 2

NDB Data Node 3 NDB Data Node 4

Partition 0, Primary

Partition 2, Copy

Partition 0, Copy

Partition 2, Primary

Partition 1, Primary Partition 1, Copy

Partition 3, Copy Partition 3, Primary

Node Group 1

Node Group 0

The speaker says...

MySQL Cluster uses synchronous replication (eager update
anywhere) and partitioning to. Distribution transparency is
high, so is availability and scalability.

The partitioning/sharding is completely hidden from the SQL
user. Queries run in parallel on multiple nodes. Transactions
can and will spawn over multiple nodes. However, eager
systems are not well suited for WAN connections – MySQL
Cluster can be replicated among multiple data centers with
semi-automatic conflict resultion.
But, NDB != InnoDB. Details are worth a dedicated
presentation. Fabric and Cluster co-exsist peacefully.

Compared with: MongoDB

MySQL Fabricmongos

Primary/Master

Slave Slave

Shard/Shard Group

Primary/Master

Slave Slave

Shard (Groups)

mongos MySQL Fabric

Primary/Master

Slave Slave

Shard/Replica Set

Primary/Master

Slave Slave

Shard/Shard Group

Application

Driver

Application

Driver

The speaker says...

Need I say more? Yes, I do. There is way more to say.
Meet me at the PHP Summit in December!

The data models are different. MySQL is using a strictly
typed relational data model. Sharding is possible in such a
model, but if not done transparently, it requires developers
to plan their queries carefully. Think queries or transactions
spawning multiple shards. Whereas plain Key/Value or
Key/Document is perfect for partitioning. In an ideal world,
documents are self-contained and there is no need for joins
or distributed transactions. As usual, this is not free of
charge. In computer science you always trade in one
advantage for another. My trade at 1:39am: some sleep in
favour of better slides. See you in Berlin, PHP Summit!

This presentation describes
the very first pre-production
lab release of MySQL Fabric
published in 09/2013.

Please, keep this in mind
with regards to all limits
discussed. Competition
will highlight the weak
points. Ask youself whether
this or that limit is by design,
or you should check the
documentation for improvements.

Initial release...

THE END

Contact: ulf.wendel@oracle.com

The speaker says...

Thank you for your attendance!

Upcoming shows:

Talk&Show! - YourPlace, any time

DOAG SIG Development/Tools,

Eschborn, 25.09.2013

PHP Summit
Berlin, 02.-04.12.2013

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 8
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 18
	Folie 20
	Folie 22
	Folie 24
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 36
	Folie 37
	Folie 38
	Folie 40
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 48
	Folie 50
	Folie 52
	Folie 54
	Folie 56
	Folie 57
	Folie 58
	Folie 60
	Folie 61
	Folie 62
	Folie 64
	Folie 65

