

InnoSQL -
NoSQL in MySQL
Starring as Kaspele: Ulf Wendel

Bed time story: Káschberl!

Foreword and disclaimer

This presentation was given as a „Night Session“ at the
PHP Summit 2013 in Munich, capital of the Bavarian
Kingdom. After a day packed with trainings the audience
deserves a rest. The bed time story is a Kasperltheater, a
traditional puppet theater, which has its roots in the 17th
century. According to Wikipedia, the puppet character
actually named Kasper first appeared in Munich in 1858 in a
marionette play...

Todays fairy tale is about NoSQL in MySQL. Remember, all
databases are named after the children of their inventors.
The children are: My, Max and Maria. There is no son called
No. Thus, there cannot be NoSQL in MySQL - ever!

http://php-summit.de/

Foreword and disclaimer

Disclaimer: If in the portrayal of internal processes you think
you identify similarities with persons still living and working
or the procedures of the "PhoenixSQL", such similarities are
neither intended nor coincidental but unavoidable....

Like so many fairy tales, there may be a true story behind.
Like so many bed time stories, this one could have a moral.
Like so many presentations, this works best live.

For example, Slideshare cannot play the puppet scenes in
front of you... or, give you a vodka shot.

InnoSQL -
NoSQL in MySQL
Starring as Kaspele: Ulf Wendel

The speaker says...

„Lady Sakila gets a key value store“

Starring:

Sakila, the desperate beauty

Phoenix, the creative cock

Innobear, the allmighty

A snoopy seagull

Kasperle

Free bonus:

„Beyond the fairy tale“ by Kasperle

Drizzle?
SQL free cloud solutions that
don't leave you in the rain!

Season style:
Hot NoSQL outfits

We love NoSQL
BREAKING NEWS:
NoSQL explained

*** Couchbase and CouchDB split – exclusive photo ***

First act: the wretch

*** International jet set trend: polyglot persistence ***

*** Framed workers: Having been grouped by aggregates ***

The speaker says...

Sakila: (crying, silently)

Kasperl: Sakila, my dear, what happened?

Sakila: Oh, Kasperl! I am so desperate. I made superior
database technology available and affordable to anybody.
MySQL became the M in the industrial standard called LAMP.

Kasperl: (interrupts her) My one and only - you are the #1!

Sakila: I read the IT yellow press at the beauty parlour.
NoSQL celebrities all over. Not a single mention of myself.
Kasperl, my glorious times are over (crying, loud)....

Kasperl: Sweetheart, no! Together with our mighty friends,
we will find a new outfit for you. The front page is yours.

Key Value Store

1234 - I am super FAST
4567 - LIGTHNING fast
7890 - [1][2][3][4][5]

abcd - [1[a,b,c]],[2[d,e,f]]
de- 1,281,2828,2,173,8

Swipe, tap, click, and zoom

Graph Database Big Data/Column-oriented

010101001011010
101010110100101
101010010101010
101010110101011
101010110111101

Document Database

{"documents":"rock"}
{"mysql":"not"}

{"documents":"rock"}
{"mysql":"not"}

{"documents":"rock"}

The speaker says...

Kasperl leaves the stage to learn who those NoSQL
celebrities are.

There are many, that's for sure. Celebrity central at nosql-
database.org lists more than 150+ newcomers.

There are many fans, that' s for sure. Market researchers
predict 25% less MySQL fans within five years*. Some 30%
looked into or already use NoSQL**.

There are four major groups of celebrities, that's what the
records say. Lines between them are not always clear.

* http://de.slideshare.net/mattaslett/mysql-vs-nosql-and-newsql-survey-results-13073043

** MySQL users of the 451 Research sample

http://de.slideshare.net/mattaslett/mysql-vs-nosql-and-newsql-survey-results-13073043

Key Value Store

Swipe, tap, click, and zoom

Graph Database Big Data

Document Database

Memcache, Redis, Riak,
LevelDB, BerkeleyDB,

Dynamo, ...
MongoDB, CouchDB,

RethinkDB, ...

Neo4j, FlockDB... BigTable, Hadoop,
Cassandra…

The speaker says...

Fan count goes somewhat down from top left to bottom
right.

For many years already, Sakila showed up happily with her
friend Memcache. MySQL was the leading one-fits-all
solution co-existing with Memcache as a cache front end in
a traditional architecture.

Then came a change (sometimes referred to as): polyglot
persistence. The market changed. After decades of RDBMS
dominance new, specialized products appeared in public.
Often driven by Web 2.0 challenges. Some new ideas, many
old ideas are incorporated into them.

A new era of databases

Explore the benefits

Elastic

Scaleable

Easy To Use

Highly Available

The speaker says...

Not Only SQL databases aim to be scalable. From one node
to one tousand nodes in a bit. And, back depending on both
query load and data size! Sharding built-in! Chewing gums
of the cloud area!

Master down? No problem. Some don't do lame primary
copy. Paxos and others ensure the database cluster survives
the failure of nodes – including primaries, if any.

Hot on conferences: JavaScript, HTTP, JSON you name it -
ingredients of todays web applications. So easy with
hierarchical structures, weak types and no schema changes!

Key Value Store

1234 - I am super FAST
4567 - LIGTHNING fast
7890 - [1][2][3][4][5]

abcd - [1[a,b,c]],[2[d,e,f]]
de- 1,281,2828,2,173,8

Zoom! Key Value Store

High Performance

Limited Search and Types

Scaleable

Limited Persistence

The speaker says...

A Key Value Store strikes for its simple data model which is
that of an associative array/hash. The data model is
poor at ad-hoc queries: loose the key and you lock your
data in the treasure. But, it is fast. A need for speed has
led to many in-memory solutions in this class. A perfect
model for use as a cache. If used as a cache, persistence is
often secondary. Generally speaking the data model is
perfect for partitioning/sharding. There are no operations
covering multiple values, thus values can be distributed on
multiple nodes to scale the system.

Most operations are basic (CRUD). Redis stands out with
complex data types and correspondig commands.

Using MySQL as a NoSQL –
A story for exceeding 750,000 qps
on a commodity server

[…] MySQL/InnoDB 5.1 […] When
you run simple multi-threaded
"memcached get" benchmarks, you
can probably execute 400,000+ get
operations per second, even though
memcached clients are located on
remote servers. […] network i/o
bound [...] 260,000 qps on MySQL
via HandlerSocket, 220,000 qps on
memcached [...]

Second act: Phoenix, the super, super, super star

The speaker says...

Meanwhile in Farfaraway. A former colleguage of Sakila
becomes a super, super, super star over night.

Voice from the off: (applaudes) We have a winner!

Phoenix: I am the first to squeeze out 750,000 queries per
second from stock MySQL 5.1 using commodity hardware!

Audience 1: Finally! For simple queries SQL parsing took
some 50% of the total query execution time.

Audience 2: Pfft, MySQL Cluster reached that in 2004...

Audience 3: Oh, those youngsters. We have HANDLER
since ISAM times!

… what, why, how ?!

Flexible storage engine API

MySQL Server

SQL Clients (C, C++, JDBC, ODBC, .NET, Perl, Python, ...)

Pluggable Storage Engines - Storage Handler API

SQL

MyISAM

Connection Pool
Authentication, Thread Reuse, Connection Limits, Caches, ...

Parser Optimizer Caches & Buffers

InnoDB NDB Archive Federated Memory,...

The speaker says...

The creative and innovative phoenix took a deep look inside
MySQL. He was wondering where MySQL spends most time
for the most common type of queries his company issued:
simple primary key based look-ups and limited range scans.

SQL parsing and frequent thread locking for synchronization
tasks turned out to be expensive whereas in-memory and
CPU efficiency of the InnoDB storage engine proved to be
competitive. Phoenix recalled previous work: „Mycached:
memcached protocol support for MySQL […] The QPS
(queries per second) of mycached is roughly 2x compared to
using SQL [...]“

Let the hacking begin!

HandlerSocket daemon plugin

Rich SQL queries Simple K/V queries

Storage Handler API

MyISAM

MySQL HandlerSocket PluginMySQL Core

InnoDB Archive, Federated, ...

3306 (Read/Write) 9998 (Read) 9999 (Write)

The speaker says...

A MySQL daemon plugin is a „do-whatever-you-want“
extension to MySQL. A plugin is a dynamic library running as
part of the server process.

HandlerSocket starts a multi-threaded network server. The
network server listens on ports 9998 and 9999 by default.
One port handles read requests, the other port handles
write requests. Data stored in MySQL is accessed through
the internal low-level storage engine API of MySQL. A
lightweight and simple one-line based request response
style protocol is used by HandlerSocket. Attention: new
protocol means new client libraries required!

Using HandlerAPI does not mean, it works with MyISAM. HS
+ MyISAM is buggy: ACK for failed insert, wrong defaults, ...

Setting things up: compiling...
> git clone https://github.com/DeNA/HandlerSocket-Plugin-for-MySQL.git

> cd HandlerSocket-Plugin-for-MySQL/

> ./autogen.sh

> ./configure --with-mysql-source=/data/nixnutz/ftp/mysql-5.5.30/ --with-mysql-

bindir=/data/nixnutz/ftp/mysql-5.5.30/install/bin --with-mysql-plugindir=/data/nixnutz/ftp/mysql-

5.5.30/install/lib/plugin/

> make clean && make -j3

> sudo make install

> nano /data/nixnutz/ftp/mysql-5.5.40/install/my.cnf

> mysql -uroot -S/tmp/mysql5530.sock test

mysql> INSTALL PLUGIN handlersocket SONAME 'handlersocket.so';

mysql> SHOW PLUGINS;

mysql> SHOW PROCESSLIST;

> wget http://php-handlersocket.googlecode.com/files/php-handlersocket-0.3.1.tar.gz

> tar xvzf php-handlersocket-0.3.1.tar.gz

> cd handlersocket

> phpize && ./configure && make clean && make -j3

> sudo make install

> nano /usr/local/lib64/php.ini

http://php-handlersocket.googlecode.com/files/php-handlersocket-0.3.1.tar.gz

The speaker says...

HandlerSocket is distributed in source „as-is“ by the original
authors. It has originally been developed to work with
MySQL 5.1. The latest version can be compiled against
MySQL 5.5. MySQL 5.6 is currently not supported but may
so in the future. MySQL forks may distribute patched
versions, however, I went for the original repository.

PHP users can choose from two PHP based client libraries
implementing the text-based protocol and one C/C++ PHP
based extension. For all tests the PHP extension has been
used. The handlersocket PHP extension is using the C++
client library shipped with HandlerSocket.

HandlerSocket: PK lookup

try {

 $hs_r = new HandlerSocket("127.0.0.1", 9998);

 if (!($hs_r->openIndex(

 1, "mysql", "plugin", 'PRIMARY', 'name,dl')))

 throw new Exception($hs_r->getError());

 if (false === ($v = $hs_r->executeSingle(

 1, "=", array("handlersocket"))))

 throw new Exception($hs_r->getError());

 var_dump($v);

} catch (Exception $e) {

 var_dump($e);

}

The speaker says...

Generally speaking the HandlerSocket API mimics some
principles of the MySQL internal storage handler API. The
internal API was not designed to be exposed to a web user.
Means, HandlerSocket API may not look very appealing to
you.

To read or write data one has to open an index first. No
index, no fun. Then, the index identifier is used to issue a
query. The slide shows the counterpart of: SELECT name,
dl FROM mysql.plugin WHERE name =
'handlersocket' . The query is run in „autocommit“
mode. Transaction isolation level should be dirty read. Data
is returned as string to PHP. Strings are returned „as-is“ - no
special charset handling.

HandlerSocket: INSERT

try {

 $hs_w = new HandlerSocket("127.0.0.1", 9999);

 if (!($hs_w->openIndex(

 1, "test", "ulf", 'PRIMARY', 'col_value')))

 throw new Exception($hs_w->getError());

 if (false === ($pk = $hs_w->executeInsert(

 1, array("value"))))

 throw new Exception($hs_w->getError());

 var_dump($pk);

} catch (Exception $e) {

 var_dump($e);

}

The speaker says...

The PHP function calls to insert a record are very similar to
those for fetching data: open index, run command. The
executeInsert() function returns the primary key value upon
successful insertion using a PRIMARY key index. The table
used in this example is: CREATE TABLE
test.ulf(col_id INT AUTO_INCREMENT PRIMARY
KEY, col_value VARCHAR(255)) ENGINE=InnoDB .
The INSERT statement run through the HandlerSocket API
is: INSERT INTO test.ulf(col_value) VALUES
('value') .

The write request could also have been sent on the port
dedicated for read requests. The split into read and write
port exists only to allow distinct, dedicated thread pools.

Complex statements on indicies

where_cond: <idx_col> [=,<,<=,>, >=] <value>

SELECT <idx_col>[,idx_col, ...] FROM table WHERE where_cond

SELECT ... FROM table WHERE ... LIMIT offset[,row_count]

SELECT ... FROM table WHERE idx_col IN(<value>[, value, ...]

SELECT ... FROM table WHERE ... [AND …]

$ret = $hs->executeSingle(1, '>=', array('K1'), 10, 0, null, null,

array(array('F', '>', 0, 'F1'), array('F', '<', 1, 'F10')));

/* SELECT k, v FROM table WHERE k >= 'K1' AND f1 > 'F1' AND f2 <=

'F20' LIMIT 10 */

UPDATE table SET ...[, ...]

UPDATE table WHERE ... SET ...

Options: return previous value, return affected rows, increment,

decrement

The speaker says...

The HandlerSocket user API covers more than the most
basic use case of a primary key lookup, it offers more than a
GET key operation. For example, WHERE conditions can be
composed of multiple ANDed condition. The IN operator is
supported. LIMIT can be used.

It is, however, not possible to sort results, or to write a
query that spawns multiple tables. For rich querying, SQL
has to be used.

Some tweaks for UPDATE operations exist.

Third act: Innobear rescues Sakila. So, so, so close!

The speaker says...

The NoSQL news made it to Kasper.

Kasper: Innobear, news: MySQL is faster than Memcache!
Let me show you what Phoenix developed.

Innobear: Hmm... Great idea, probably we can do better...

Kasper: We must gather the team. You go to find Sakila, I
have a rough idea where to find Seagull.

Innobear: (loud) Sakila, where are you! We got news!

Sakila: (whining from a distant, ready to jump off a bridge)

Innobear: (comes close to her) Please, don't jump!

Sakila: Goodbye fast friend. (jumps)

Innobear: (grabs her tail fin the very last second)

Third act: Seagull is a valuable team member

The speaker says...

Kasper: Seagull!

Seagull: Oh, oh, oh, … I promise: I'll do everything to raise
shareholder value. The company has my full attention. Also,
remember what our all first work contracts said about
drinking. We must not begin working when drunk. It didn't
say anythink about drinking during...

Kasper: Stop it! Shareholder value is more important!

Kasper and Seagull return to meet Innobear and Sakila.
Together they decide to develop a secret plan!

Sakila takes a rest at a beauty farm.

Third act: at labs.mysql.com

© Fairywikileaks

The speaker says...

Innobear, Kasper and Seagull go down to the cellar to begin
their work. They shut all doors and windows to focus on
their secret task. For reasons of fire security and data
protection, we cannot go into details.

Fairywikileaks reports that bookface.com technicians
commented to Phoenixs' and other blogs that an embedded
InnoDB with Memcached interface would be of great value.
Isotipp from book-kings-hotels.com publishes a blog post in
which his colleguage reports up to 10x higher query rates
using HandlerSocket, confirming its faster than Memcached.

RDBMS and Key Value Store combined

• Benefits of a mature RDBMS

• High performance key lookup plus rich SQL ad-hoch querying

• No need to synchronize between cache and RDBMS

5.6: InnoDB Memcache Plugin

MySQL 5.6

InnoDB

id | firstname | lastname

1 | Ulf | Wendel
2 | Nils | Lagner

SQL Memcache Protocol

MySQL 5.6

InnoDB

id | firstname | lastname

1 | Ulf | Wendel
2 | Stephanie | Neu

SQL Memcache Protocol

The speaker says...

Eventually, MySQL 5.6 gets released. Innobear and Seagull
start a presentation... MySQL 5.6 has both a SQL and a
NoSQL interface. The proven, lightweight Memcache
protocol gets used. Many MySQL users set on Memcached
since years. Memcached language bindings are available for
all major programming languages. Familarity and stability of
the APIs are a given.

The full potential of the stable and CPU-efficient B-tree
based storage engine InnoDB, which features automatic,
adaptive hashing ever since, gets unveiled. In-memory
performance is great because it has to be. Estimated 20%
use 64 – 256 GB RAM with MySQL.

Zoom! InnoDB Memcache

MySQL 5.6

InnoDB

id | firstname | lastname

1 | Ulf | Wendel
2 | Inno | Bär

SQL Memcache Protocol

Storage Handler API

MyISAM

Memory

...

Memcached Plugin

Standard
Memcache
In-Memory

Storage

Core

InnoDB API

The speaker says...

The InnoDB Memcached Plugin integrates a Memcached
network server into MySQL. The integrated Memcached
server can either use main memory or InnoDB for storage.
Similar to MySQL, Memcached allows multiple storage
backends. The Memcached server integrated into the plugin
can use InnoDB as a storage backend.

InnoDB is accessed through the InnoDB API (basically the
former Embedded InnoDB API). The InnoDB API is lowest-
level API to communicate with InnoDB, thus it is the fasted
way. This promises even higher performance than the
Storage Handler API. This, however, means no loss of
features: Replication, transactions etc. are supported.

Zoom! MySQL Cluster Memcache

MySQL Server / Cluster 7.2

MySQL Cluster (NDB) data node

id | firstname | lastname

1 | Ulf | Wendel
2 | Nils | Lagner

SQL Memcache Protocol

Storage Handler API

MyISAM

Memory

...

InnoDB

Memcached

ndb_eng

NDB API

The speaker says...

BTW, MySQL Cluster 7.2 now supports Memcached as well.
MySQL Cluster/NDB nodes can serve as a storage backend
for Memcached. Memcached is using NDB API, the native
C++ API of MySQL Cluster, to fetch and store data.

The process model, however, is different from the MySQL
InnoDB Memcached Plugin. Memcached is not integrated
into the MySQL Server. Memcached is run „standalone“ as a
seperate network server.

You can choose whether to run the Memcached, the MySQL
Cluster data nodes and the application on one machine (low
latency) or on different ones (fail safety).

… back to InnoDB.

InnoDB Memcache Setup

mysql> source MYSQL_HOME/share/innodb_memcached_config.sql

mysql> INSTALL PLUGIN daemon_memcached SONAME 'libmemcached.so';

mysql> SHOW PLUGINS;

mysql> SHOW DATABASES;

mysql> USE innodb_memcache;

mysql> SHOW TABLES;

+---------------------------+

| Tables_in_innodb_memcache |

+---------------------------+

| cache_policies |

| config_options |

| containers |

+---------------------------+

3 rows in set (0,00 sec)

The speaker says...

Before the InnoDB Memcached plugin can be installed using
INSTALL PLUGIN statement, one has to setup the plugins
configuration database innodb_memcached and its tables
by executing a SQL script.

HandlerSocket puts no restrictions on which databases and
tables can be manipulated through the network ports it
openes whereas the Memcached plugin allows finer access
control. Speaking of access control: HandlerSockets only
way to secure access is requiring a clear-text password to
be sent upon connect. Memcached supports Simple
Authentication and Security Layer (SASL) based password
protection, means: various password methods supported.

Container basics

mysql> CREATE TABLE test.memc_kv (

 col_key VARCHAR(32) NOT NULL DEFAULT '',

 col_value VARCHAR(250) DEFAULT NULL,

 memc_internal_flags INT(11) DEFAULT NULL,

 memc_internal_cas BIGINT(20) UNSIGNED DEFAULT NULL,

 memc_internal_expire_time INT(11) DEFAULT NULL,

 PRIMARY KEY (col_key)

) ENGINE=InnoDB;

mysql> INSERT INTO innodb_memcache.containers(name, db_schema,

db_table, key_columns, value_columns, flags, cas_column,

expire_time_column, unique_idx_name_on_key) VALUES ('container_a',

'test', 'memc_kv', 'col_key', 'col_value', 'memc_internal_flags',

'memc_internal_cas', 'memc_internal_expire_time', 'PRIMARY');

mysql> UNINSTALL PLUGIN daemon_memcached;

mysql> INSTALL PLUGIN daemon_memcached SONAME 'libmemcached.so';

The speaker says...

To make a table accessible through the Memcached
interface, it has to be listed in the
innodb_memcached.containers configuration table.

A most basic table must have a unique index to be used as
key and a column to hold a value. Both key and value
columns must be strings (CHAR, VARCHAR, TEXT).

The table should have three columns used by Memcached. A
column to store flags, one to store the cas (compare-and-
swap) and one for the expire value of Memcached. If those
columns are omitted, Memcached protocol features and/or
the plugin may not work properly.

InnoDB Memcache: key lookup

try {

 $memc = new Memcached();

 if (!$memc->addServer("127.0.0.1", 11211))

 throw new Exception($memc->getResultCode());

 if (false == $memc->set("A", "Value"))

 throw new Exception($memc->getResultCode());

 if (false === ($val = $memc->get("A")))

 throw new Exception($memc->getResultCode());

 var_dump($val);

} catch (Exception $e) {

 var_dump($e);

}

The speaker says...

No surprises for the most basic application: SQL table
mapped to Memcache, standard PHP Memcache API used to
access the SQL table.

Please note, whenever you change the container
configuration you have reload the plugin to make it aware of
configuration changes. Also, for your initial tests you may
want to have no more than one container configured. More
on this later.

Container: column mapping

mysql> CREATE TABLE test.memc_test2 (

 col_key varchar(32) NOT NULL DEFAULT '',

 col_val_a varchar(250) DEFAULT NULL,

 col_val_b varchar(250) DEFAULT NULL,

 memc_internal_flags int(11) DEFAULT NULL,

 memc_internal_cas bigint(20) unsigned DEFAULT NULL,

 memc_internal_expire_time int(11) DEFAULT NULL,

 PRIMARY KEY (col_key)

) ENGINE=InnoDB;

mysql> INSERT INTO innodb_memcache.containers(name, db_schema,

db_table, key_columns, value_columns, flags, cas_column,

expire_time_column, unique_idx_name_on_key) VALUES ('container_b',

'test', 'memc_test2', 'col_key', 'col_val_a,col_val_b',

'memc_internal_flags', 'memc_internal_cas',

'memc_internal_expire_time', 'PRIMARY');

The speaker says...

A Memcached value stored in an InnoDB table through the
Memcached interface can spawn multiple columns. To map
multiple SQL columns to a value, list the columns of the SQL
table to be mapped in the container configuration tables
value_columns column. Create a comma seperated list of
the columns to be mapped and store it in
innodb_memcached.containers.value_columns.

Remember, that there are constraints. Only string columns
are supported. There are size limitations: key and value
together are limited to 1MB. Please, see the manual for
further limits primarily related to InnoDB indexes.

Multiple columns value

[...]

if (false == $memc->set("A", "ValueA|ValueB"))

 throw new Exception($memc->getResultCode());

if ($res = $mysqli->query(

 "SELECT * FROM memc_test WHERE col_key = 'A'")){

 $row = $res->fetch_assoc();

 printf("Key '%s': '%s' - '%s'",

 $row['col_key'], $row['col_val_a'], $row['col_val_b']);

} else {

 throw new Exception($mysqli->error);

}

[...]

Key 'A': 'ValueA' - 'ValueB'

The speaker says...

To store a value into multiple SQL columns, it is first split by
a seperator. Then, the parts are mapped to the columns
configured and stored. The reverse logic is applied when
fetching a value through the Memcache interface. The
mapped columns values are concatenated by the seperator.

The default seperator is |. The seperator is configurable:
REPLACE INTO
innodb_memcache.config_options(name, value)
VALUES ('separator', '@');

Restart the plugin to make the change take effect.

CAUTION, sad but true: there is no escape sign!

Containers (plur.): @@name.key

$memc->set("A", "Default, first or only container");

var_dump($memc->get("A"));

var_dump($mysqli->query("SELECT * FROM memc_default WHERE col_key =

'A'")->fetch_assoc()['col_val']);

$memc->set("@@container_b.A", "Container|named 'container_b'");

var_dump($memc->get("@@container_b.A"));

var_dump($mysqli->query("SELECT * FROM memc_test2 WHERE col_key =

'A'")->fetch_assoc()['col_val_a']);

string(32) "Default, first or only container"

string(32) "Default, first or only container"

string(29) "Container|named 'container_b'"

string(9) "Container"

The speaker says...

You can configure as many containers as you want. To
access individual containers (SQL tables) through the
Memcache interface, prefix the Memcache key with the
containers name: name.key. The dot in name.key is
configurable, the @@ part is not. Update the table
innodb_memcache.config_options to change the
seperator.

If multiple containers are configured and no prefix is used
with the key, the value is stored in the container with the
special name default .Caution: if you have multiple
containers, none of which is named default and your key
does not look like name.key, the value is not rejected but

it goes into the first (alphabetic order) container set.

Fourth act: subversive activities, or valuable team member?

… natural and fresh from the country!
BTW, if you can read this, you don't need glasses!

The speaker says...

Kasper is very proud of Innobear! But, he seems to be the
only one on stage. Seagull was supposed to help Innobear!

Kasper: (from the off) Seagull!

Seagull: … *hit, yeah....

Kasper: (from the off) Seagull, your behaviour cannot be
tolerated. I expect you to behave. Go back on stage to help
Innobear. But, I warn you, take the presentation serious.
This is a serious conference...

Seagull: (jumps on stage) Yes, Sir! I'll take over...

Innobear: (grumpy, whispering) Finally, I need to go to
the restrooms.

GET @@name = USE name

$memc->set("@@container_b.A", "Container|named 'container_b'");

var_dump($memc->get("@@container_b"));

var_dump($memc->get("A"));

var_dump($memc->delete("A"));

var_dump($memc->get("A"));

var_dump($memc->get("@@default"));

$memc->set("A", "Will it go into default?");

var_dump($memc->get("A"));

string(17) "test/memc_default"

string(29) "Container|named 'container_b'"

bool(true)

bool(false)

string(17) "test/memc_default"

string(24) "Will it go into default?"

The speaker says...

Seagull seems to take his boss Kasper serious and gives his
best...

Issuing a GET request for @@name switches a sessions
default container. This „USE“ statement changes the default
container used for all subsequent GET, SET and ADD
commands but for no other command. For example, INCR
and DELETE, should not support the syntax... says the
manual. Hmm, however, example shows the opposide...
whatever...

Kasper: (from the off) Seagull! We want positive news!

● When to commit
● daemon_memcached_r_batch_size (default: 1)
● daemon_memcached_w_batch_size (default: 1)
● innodb_api_bk_commit_internal (default: 5)

● Transaction Isolation level
● innodb_api_trx_level (READ UNCOMMITTED)

● Assorted lock related
● innodb_api_enable_mdl (OFF)
● innodb_api_disable_row_lock (no docs)

Transaction and lock control

The speaker says...

Transaction control with the InnoDB Memcache Plugin is
finer than with HandlerSocket. You can set how often read
and write operations will commit and what transaction
isolation level is used. Default is autocommit-style with
READ UNCOMMITED. If data safety is not an issue, you may
lower the commit rates to improve performance.
innodb_api_bk_commit_internal is for idle client
connections, not for active ones.

Enabling innodb_api_enable_mdl locks the table used
by the InnoDB memcached plugin, so that it cannot be
dropped or altered by DDL through the SQL interface.

$mysqli = new mysqli("localhost", "usr", "pass", "test");

$memcache = new memcached();

$memcache->addServer("localhost", 11211);

mysqlnd_memcache_set($mysqli, $memcache);

$res1 = $mysqli->query("SELECT firstname FROM test WHERE id = 1");

$res2 = $mysqli->query("SELECT * FROM test);

Transparent fast key access

mysqli PDO_MySQL mysql

MySQL native driver for PHP (mysqlnd)

Plugin: PECL/mysqlnd_memcache

SQL access Memcache access

The speaker says...

PECL/mysqlnd_memcache is another free and open source
plugin for the PHP mysqlnd library. Mysqlnd is the compile
time default C library used for all PHP MySQL APIs (mysqli,
PDO_MySQL and mysql).

Like other plugins it adds new features to all the APIs.
Based on a configurable regular expression the plugin turns
a SQL access into a Memcache access. Due to the
lightweight protocol and direct access the Memcache access
to MySQL is faster. No matter what protocol used by the
library, the user gets a standard result set in return. Simple
to use. However, note that no meta data is available if a key
access has been performed.

Well... in theory... no escape character for multi-columns...

● In general...
● Big variation in methods, setup (cores!), and results
● Risk of comparing apples and oranges
● No „standard“ YCSB results published by anybody

• Roughly...
● PK SELECT – 1.5x … 4x faster than SQL
● PK INSERT – upto 9x faster than SQL
● Connect is way faster than SQL
● HandlerSocket: try yourself, script for download

Benchmarking

http://blog.ulf-wendel.de/downloads/handler_vs_memc_bench_php.txt

The speaker says...

Kasper: (from the off, whispering) You better have some
strong slides coming Seagull – stay on the positive side...

Benchmarking is hard to do. MySQL is optimized for multi-
core machines, whereas Redis, for example, can hardly use
more than one core with its single-threaded architecture!
Thus, quick-and-dirty benchmarks from a developers
notebook may point the wrong direction. An option for a
serious benchmark would be the Yahoo! Cloud Serving
Benchmark – no results known. For those of you that want
to play single-core, grab this script. On my notebook it
showed HandlerSocket (MySQL 5.5) behind InnoDB
Memcached (MySQL 5.6) by 20-30% for connect + fetch.

Gotcha HandlerSocket : 30s

if (!($hs_r->openIndex(PHP_INT_MAX, …))

terminate called after throwing an instance of 'std::bad_alloc'

 what(): std::bad_alloc

21:14:12 UTC - mysqld got signal 6 ;

[...]

Attempting backtrace. You can use the following information to find

out where mysqld died. If you see no messages after this, something

went terribly wrong...

[...]

usr/lib64/libstdc++.so.6(_Znwm+0x7d)[0x7f1e08088ecd]

/data/nixnutz/ftp/mysql-

5.5.30/install/lib/plugin/handlersocket.so(_ZNSt6vectorIN4dena9prep

_stmtESaIS1_EE14_M_fill_insertEN9__gnu_cxx17__normal_iteratorIPS1_S

3_EEmRKS1_+0xb6)[0x7f1e064e2c46]

The speaker says...

Kasper: (from the off, loud) Seagull, you are running out of
time. And, this is bad style. It would be one line to fix this.
Plus, HandlerSocket manual explicitly asks to use small
numbers.

Seagull: (hicks) Yes, Sir! However, his is what happened to
me after 30 seconds. Only one more for the fair play...

Gotcha Memcached: 3000s?

uninstall plugin daemon_memcached; install plugin daemon_memcached

soname 'libmemcached.so';

Query OK, 0 rows affected (50,04 sec)

ERROR 2013 (HY000): Lost connection to MySQL server during query

[...]

2013-03-17 19:29:28 38575 [Note] Shutting down plugin

'daemon_memcached'

 InnoDB_Memcached: column 6 in the entry for config table

'containers' in database 'innodb_memcache' has an invalid NULL

value

Failed to initialize instance. Error code: 13

2013-03-17 19:29:37 38575 [Note] Shutting down plugin

'daemon_memcached'

The speaker says...

Kasper: (coming to the stage, loud) Seagull!

Seagull: (hicks) But, Sir! This is even documented. If you
misconfigured the plugin accidently, the server may run into
troubles. If so, one shall set daemon_memcached=OFF in
the server configuration and restart the server. Then, fix
the issue. However, do not issue UNINSTALL PLUGIN if
SHOW PLUGIN shows an disabled InnoDB Memcached
plugin. If you do, your server crashes...

Fifth act: Grand finale with Innobear

The speaker says...

Kasper: Ladies and gentlemen, Seagull needs a rest.
Innobear has come back for the grand finale.

Key Value Store

1234 - I am super FAST
4567 - LIGTHNING fast
7890 - [1][2][3][4][5]

abcd - [1[a,b,c]],[2[d,e,f]]
de- 1,281,2828,2,173,8

Zoom! MySQL as a KVS

High Performance

Limited Search and Types

Scaleable

Limited Persistence

SQL for ad-hoc querying

Threaded/Multi-Core,
Replication

In-memory,
on-disk with fast recovery

Try the NoSQL APIs!

The speaker says...

The InnoDB Memcache Plugin is certainly a step forward.
MySQL is putting pressure on itself to modularize the server
allowing users to slim MySQL, to strip off features not
needed to get a certain job done.

Users get more choices. If you want to combine a fast and
lean client protocol with simple and fast access operations
but cannot accept compromises on persistence or scalability,
here you go.

BTW: Cluster has been a speed monster ever since. In late
2012 we published benchmarks with 4.3B ops.

Really rich queries!

Happy End: Sakila, Sakila and Sakila in ITs' yellow press!

Free Sakila collector card

Supercharge
your web apps

with MySQL

*** True: NoSQL weekly recommends MySQL whitepaper ***

*** Exclusive tipps: natural beauty at any age ***

THE END

Contact: ulf.wendel@oracle.com

The speaker says...

Speaker grabs a bottle of beer.

His phone rings. He picks up.

Speaker: No, I did not forget anything. No, darling, I will
not do that... (listens) … Ok, ok! (hangs up)

Speaker: Turns to the audience. Ok, you get to hear a
nightcap. But, I will not sing for you.

Nightcap: Helan Går

Helan går
Sjung hopp faderallan lallan lej
Helan går
Sjung hopp faderallan lej
Och den som inte helan tar
Han heller inte halvan får
Helan går
(Drink)
Sjung hopp faderallan lej

(Music plays, singer: Kaj Arnö)
The whole goes
Sing "hup fol-de-rol la la la la"
The whole goes
Sing "hup fol-de-rol la la"
And the one who doesn't take the whole
Doesn't get the half either
The whole goes - (Drink)
Sing "hup fol-de-rol la la"

The speaker says...

Music plays:

 http://www.youtube.com/watch?v=HyZpCs3i71s

Speaker: You have still not fallen asleep? Ah, you are
looking at my beer bottle. Hmm, well, don't tell your mom...
(hands over some bottles and shot glasses to the audience)

Please, serve yourself. By the end of free bonus coming
now, I expect you all to snooze peacefully.

http://www.youtube.com/watch?v=HyZpCs3i71s

Free bonus: beyond the fairy tale

The speaker says...

As you are having your shots, allow me to summarize the
talk.

Not a bad attempt at all... Go try! Go ask for more!

A significant number of MySQL users is using Memcached
• Deploy only one data store instead of two

• Dual interface: can we skip a caching layer in our apps?

A good first step, but looking for more
• Persistence for Memcache - more of a topic for Redis?

• No issues with warm-up or stampeding/slamming

• KVS is about performance, where is the proof @ 5.6...?

• Data model is about distribution/sharding, MySQL Cluster only?

Ulf's take... - Awareness

The speaker says...

The InnoDB Memcached Plugin is a valuable addition to
MySQL. It can be interpreted as both a reaction to NoSQL
ideas but also (and foremost) as a reaction to customer
demand. Using MySQL with Memcached is extremly popular
– ever since. Sakila and Memcache are best friends. Check
for how long the MySQL manual includes exhaustive
documentation for using the two data stores together.
Adding two persistent storage backends (MySQL Cluster,
InnoDB) to Memcache makes sense: their performance is
competitive.

Integrating the Memcached into MySQL means: simplified
application architecture (no cache layer), thus lower costs.
And, as a benefit on top, a dual SQL/KVS interface to the
data.

Document Database

{"documents":"rock"}
{"mysql":"not"}

{"documents":"rock"}
{"mysql":"not"}

{"documents":"rock"}

Swipe, tap, click, and zoom

Graph Database Big Data/Column-oriented

010101001011010
101010110100101
101010010101010
101010110101011
101010110111101

Key Value Store

1234 - I am super FAST
4567 - LIGTHNING fast
7890 - [1][2][3][4][5]

abcd - [1[a,b,c]],[2[d,e,f]]
de- 1,281,2828,2,173,8

The speaker says...

As a reaction to NoSQL, however, it is a small step only.
NoSQL is more than Key-Value-Stores. Though, Key-Value
Stores may be the most popular kind of NoSQL deployed
today. Read: the biggest customer demand.

InnoDB Memcached mimics one of the oldest Key-Value
Stores. In a way, Memcached is a first generation KVS. Type
system and protocol/query capability are puristic unlike a
recent remote data infrastructure server (redis). Given that
InnoDB can serve as a backend for highly complex SQL and
very simple KVS, can it be bend to serve other purposes as
well?

Zoom! MySQL vs Documents

Scaleable,
Map&Reduce

Highly Available

Easy To Use

Hierarchical/nested data,
JavaScript/[J|B]SON

Hmm...

Replication: Ok, add 3rd party
Cluster: beat it!

Database and tooling: good
Need for ORM: hmm...

Replication: Write limit
Cluster: beat it!

The speaker says...

NoSQL is not only about interfaces. It is also a wonderful
potpurri of new and old data models. For examples, the
hierarchical document data model goes back to the 60th –
think IMS. In the 70th and 80th Codds relational model and
later SQL has seen criticized for allowing atomic data types
only. SQL:2003 has 90% of what is needed to store and
query arbitrarily structured JSON documents in a relational
database! Read about it at: blog.ulf-wendel.de/ .

However, NoSQL is really pushing RDBMS on clustering. We
are not talking 4, 40 or 100 nodes here. We are thousands
of nodes, possibly used with elastic sharding. Kind of doable
with MySQL but not out of the box!

http://blog.ulf-wendel.de/2013/searching-document-stores-from-the-1980s-to-sql2003-in-a-blink/

Zoom! JavaScript/[J|B]SON

Proof of Concept

MySQL speaks HTTP and replies JSON.

JavaScript (v8) runs inside MySQL.

Map&Reduce jobs use the internal

 low-level high performance interfaces.

… it could be done
http://de.slideshare.net/nixnutz/http-json-javascript-mapreduce-builtin-to-mysql

The speaker says...

Speaking of interfaces and key value stores that hold
documents... it could be done. Thank you for your
attendance!

Upcoming shows:

International PHP Unconference

Berlin, May 2013 (sold out)

International PHP Conference Spring Edition

Berlin, June 2013

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74
	Folie 75
	Folie 76
	Folie 77
	Folie 78
	Folie 79
	Folie 80
	Folie 81
	Folie 82
	Folie 83
	Folie 84
	Folie 85
	Folie 86
	Folie 87

