

PHP mysqlnd plugins as an
alternative to MySQL Proxy

Get in, hurry up!
The mysqlnd plugin talk starts!

The mysqlnd green house

Gardening mysqlnd – Concepts and Internals

Ulf Wendel, MySQL/Sun/Oracle/WhatIsNext

Use the URL not the slides!

The slides are a quick copy of the real stuff at:

http://blog.ulf-
wendel.de/mysqlnd_plugin_ipc2010.html

Target audience

 PHP developers with
C programming knowledge.

Familarity with PHP
extension writing is benefitial.

„Das MySQL-Treibhaus erweitern ...
Level: Experte“, Session description

The speaker says...

Relax, it won't get that complicated.

I am trying to sieve out potential mysqlnd plugin
implementors from the audience.

Quick poll: are you a man?

Raise your hand, if you call yourself a man.
Not a lamer, not a sissy - a real man.

Cowboys, who of you calls himself an
Open Source developer?

Please state your name!

The pub, the idea, the demo

The speaker says...

No offline demo for Slideshare.

Maybe next time we meet in person! Cu!

The MySQL native driver for PHP

 Server API (SAPI)

CGI CLI Embed ISAPI NSAPI phttpd thttpd ...

Zend Engine PHP Runtime

PHP Extensions

bcmath mysql mysqli mysqlnd pdo pdo_mysql xml ...

The speaker says...

The MySQL native driver for PHP (mysqlnd) is a C library
which implements the MySQL Client Server Protocol. It
serves as a drop-in replacement for the MySQL Client
Library (AKA libmysqlclient AKA Connector/C).
mysqlnd is part of the PHP source code repository as of PHP
5.3. Every PHP source code distribution contains it.
mysqlnd is is a special kind of PHP extension. Like ext/PDO
it does not export any userland functions. It serves as a C
library for other extensions, like ext/PDO.

Replacement for libmysql
$mysqli = new mysqli(...);

$mysql = mysql_connect(...);
$pdo = new PDO(...);

PHP (SAPI, Zend, Runtime)

PHP Extensions

mysqli mysql PDO_MYSQL

mysqlnd (or MySQL Client Library AKA libmysql AKA Connector/C)

MySQL Server

The speaker says...

All PHP-MySQL APIs can either make use of the
MySQL Client Library or mysqlnd to connect to
MySQL. The decision to use one or the other library is
made at compile time. Within a PHP binary you can mix
mysqlnd and the MySQL Client Library as you like: one PHP
MySQL API may use mysqlnd and another PHP MySQL
extension may use the MySQl Client Library. To use the
MySQL Client Library, you must have it installed on your
system (at least when building PHP), whereas mysqlnd ships
with PHP and thus has no pre-requisites.

How to grow/extend mysqlnd

ext/mysql, ext/mysqli, ext/PDO_MYSQL

*.php

mysqlnd

MySQL Server

PHP Application

*.c

*.c

mysqlnd plugin*.c

*.c

The speaker says...
The core feature set of mysqlnd is defined by the
MySQL Client Libary feature set. It has taken about
15k lines of C (without comments) to implement the
core functionality. Further growth will complicate
maintenance. Further growth will hinder an understanding
of the code base.
mysqlnd growth must be stopped without preventing
the addition of new features. Some new features may
be far beyond mainstream user requirements.
Good reasons to introduce mysqlnd "plugins".
Plugins can hook and replace all mysqlnd C API calls.

What mysqlnd plugins can do!

Drupal, Symphony, phpMyFAQ, phpMyAdmin, Oxid, ...

ext/mysql, ext/mysqli, ext/PDO_MYSQL

MySQL Server

mysqlnd

Load Balancing Monitoring Performance

mysqlnd plugin

The speaker says...
A different way to name the plugin concept is to call
it a "mysqlnd client proxy". From a PHP application point
of view plugins can do everything that can be done using
the MySQL Proxy product. For example:
• Load Balancing

– Read/Write Splitting

– Failover

– Round-Robin, least loaded

• Monitoring

– Query Logging

– Query Analysis

– Query Auditing

• Performance

– Caching

– Throttling

– Sharding

What are mysqlnd plugins?

 Extension
 Adds new functionality

 Proxy
 Surrogate
 Intermediary

The speaker says...
A better understanding of the capabilities of the
"mysqlnd plugin concept" can be gained by
distinguishing between extensions and proxies.

Extensions add new functionality to a software. For
example, it is possible to add a new, alternative wire
protocol implementation to mysqlnd for supporting the
native Drizzle client server protocol.

Another way of understanding is to look at plugins as
proxies. This is the dominating one-sided viewpoint
used in the following.

Plugin vs. MySQL Proxy (I)

PHP application

Hardware Software

Application server

Dedicated server

Database server

C/Java/.NET/PHP... application

mysqlnd plugin MySQL Proxy

PHP application

MySQL Proxy

MySQL Server

The speaker says...
Hardware topology: MySQL Proxy can either be installed
on the PHP application server or be run on a dedicated
machine. A mysqlnd plugin always runs on the application
server.
Running a proxy on the application machines has two
advantages:
• no single point of failure
• easy to scale out (horizontal scale out, scale by

client)

The speaker says...
Hardware topology: MySQL Proxy can either be installed
on the PHP application server or be run on a dedicated
machine. A mysqlnd plugin always runs on the application
server.
Running a proxy on the application machines has two
advantages:
• no single point of failure
• easy to scale out (horizontal scale out, scale by

client)

Choose: C API or wire protocol

PHP application

Layer Software

Wire protocol

C/Java/.NET/PHP... application

mysqlnd plugin

PHP application

C API

mysqlnd plugin MySQL Proxy

The speaker says...
MySQL Proxy works on top of the wire protocol. With
MySQL Proxy you have to parse and reverse engineer the
MySQL Client Server Protocol. Actions are limited to what
can be done by manipulating the communication protocol. If
the wire protocol changes, which happens very rarely,
MySQL Proxy scripts need to be changed as well.

Mysqlnd plugins work on top of the C API (and thus
also top of the wire protocol). You can hook all C API
calls. PHP makes use of the C API. Therefore you can hook
all PHP calls. There is no need to go down to the level
of the wire protocol. However, you can, if you want.

Follow me or leave the room!

Start your GCC's, boys!

 You want mysqlnd plugins because

 100% transparent = 100% compatible
 Cure applications without touching .php
 No extra software, no MySQL Proxy!
 Extend, add driver functionality

 All you need to is

 … write comments into comment files (*.c)

The speaker says...
mysqlnd plugins can be written in C and PHP - as we
will see.

We need to look at C first. C is the "natural" choice.
However, we will use it to carry the mysqlnd plugin
functionality into the userspace.

*statistics.c

mysqlnd modules
PHP Extension Infrastructure

mysqlnd.c

Connection

Modules

php_mysqlnd.c

Core

mysqlnd.c

Statistics

Resultset Resultset Meta

Statement Network Wire protocol

*_result.c *_result_meta.c

*_ps.c *_net.c *_wireprotocol.c

The speaker says...
Andrey Hristov is the core developer of mysqlnd. He is
probably the only person in the world to know each line of
mysqlnd inside out.

Andrey tried to modularize mysqlnd from the very
beginning. First he created modules. Later on the modules
became objects. Object oriented concepts crept into the
design. Without knowing he had layed the foundations of
what is called the mysqlnd plugin API today.

The above listed modules can be understood as
classes. The classes can be extended by plugins.

mysqlnd modules are objects
struct st_mysqlnd_conn_methods {
 void (*init)(MYSQLND * conn TSRMLS_DC);
 enum_func_status (*query)(
 MYSQLND *conn, const char *query,

 unsigned int query_len TSRMLS_DC);
 /* ... 50+ methods not shown */
};

struct st_mysqlnd_connection {
 /* properties */
 char *host;
 unsigned int host_len;
 /* */
 /* methods */
 struct st_mysqlnd_conn_methods *m;
};

The speaker says...
Mysqlnd uses a classical C pattern for implementing object
orientation.

In C you use a struct to represent an object. Data
members of the struct represent properties. Struct
members pointing to functions represent methods.

This always reminds me of PHP 4 but any comparison would
only distract you.

The classes
 # public #private (not final!) #total

Connection 48 5 53

Resultset 26 0 26

Resultset Meta 6 0 6

Statement 35 1 35

Network 11 0 11

Wire protocol 10 0 10

Total 136 6 142

Revision 299098 = PHP 5.3 on May, 7 2010 -
Andrey continued working since then...

The speaker says...
Some, few mysqlnd functions are marked as private.
Private does not mean final. It is possible to overwrite
them but it is discouraged. Those private functions usually
take care of internal reference counting.

Extending Connection: methods
/* a place to store orginal function table */
struct st_mysqlnd_conn_methods org_methods;

void minit_register_hooks(TSRMLS_D) {
 /* active function table */
 struct st_mysqlnd_conn_methods * current_methods

= mysqlnd_conn_get_methods();
 /* backup original function table */
 memcpy(&org_methods, current_methods,

sizeof(struct st_mysqlnd_conn_methods);

 /* install new methods */
 current_methods->query =
 MYSQLND_METHOD(my_conn_class, query);
}

The speaker says...
Plugins can overwrite methods by replacing function
pointer.

Connection function table manipulations must be
done at Module Initialization (MINIT). The function
table is a global shared resource. In an threaded
environment, with a TSRM build, the manipulation of a
global shared resource during the request processing is
doomed to cause trouble.

Do not use any fixed-size logic: new methods may be
added at the end of the function table. Follow the
examples to avoid trouble!

Extending: parent methods
MYSQLND_METHOD(my_conn_class, query)(MYSQLND *conn,
 const char *query, unsigned int query_len TSRMLS_DC) {
 php_printf("my_conn_class::query(query = %s)\n",
 query);

 query = "SELECT 'query rewritten' FROM DUAL";
 query_len = strlen(query);

 return org_methods.query(conn, query, query_len);
 }
}

The speaker says...
If the original function table entries are backed up, it
is still possible to call the original function table
entries - the parent methods.

However, there are no fixed rules on inheritance - it
is all based on conventions. We will ignore this problem
for now because we want to show how to use the plugin
API. Once you have an understanding of the basics, we can
talk about edge-cases.

In some cases, for example in case of Conn::stmt_init(), it is
vital to call the parent method prior to any other activity in
the derived method. Details will be given below.

Extending: properties (concept)
OO concept mysqlnd C struct member comment

Methods struct object_methods * methods Function table

Properties c_type member Parent properties

Extended
properties void ** plugin_data

List of void*.
One void* per

registered plugin

The speaker says...
Basic idea: allow plugins to associate arbitrary data
pointer with objects.

See below for technical details.

Extending: properties (API)
void minit_register_hooks(TSRMLS_D) {
 /* obtain unique plugin ID */
 my_plugin_id = mysqlnd_plugin_register();
 /* snip - see Extending Connection: methods */
}

static PROPS** get_conn_properties(const MYSQLND *conn TSRMLS_DC) {

 PROPS** props;
 props = (PROPS**)mysqlnd_plugin_get_plugin_connection_data
 (conn, my_plugin_id);
 if (!props || !(*props)) {

*props = mnd_pecalloc
 (1, sizeof(MY_CONN_PROPERTIES), conn->persistent);

(*props)->query_counter = 0;
 }
 return props;
}

The speaker says...
Arbitrary data (properties) can be added to a
mysqlnd objects using an appropriate function of the
mysqlnd_plugin_get_plugin_<object>_data()
family. When allocating an object mysqlnd reserves space
at the end of the object to hold void* to arbitrary data.
mysqlnd reserves space for one void* per plugin.

The management of plugin data memory is your task
(allocation, resizing, freeing)! See the below notes on
constructors and destructors for hints.

Andrey recommends to use the mysqlnd allocator for
plugin data (mnd_*loc()). This is not a must.

Daddy, it is a plugin API !

 mysqlnd_plugin_register()
 mysqlnd_plugin_count()

 mysqlnd_plugin_get_plugin_connection_data()
 mysqlnd_plugin_get_plugin_[result|stmt]_data()
 mysqlnd_plugin_get_plugin_[net|protocol]_data()

 mysqlnd_conn_get_methods()
 mysqlnd_[result|result_meta]_get_methods()
 mysqlnd_[stmt|net|protocol]_get_methods()

The speaker says...
It just happened, …

What you see is the first version. It is far from perfect. No
surprise.

ABI breaks should become very rare, However, there may
be API additions.

Risks: a (silly) man's world

 Security: sissy
 Limitations: use your leadfoot
 Chaining: alphabetical = random order

 Recommended to call parent methods
 Recommended to be cooperative

The speaker says...
No limits, take care!

A plugin has full access to the inner workings of mysqlnd.
There are no security limits. Everything can be overwritten
to implement friendly or hostile algorithms. Do not trust
unknown plugins blindly . Do not use unknown plugins
before checking their source!

As we saw, plugins can associate data pointer with objects
("properties"). The pointer is not protected from other
plugins in any meaningful way. The storage place is not
secure. Simple offset arithmetic can be used to read other
plugins data.

On PHP, the borg and ladies

*.php files

*.c files

Borg drone „PHP“ (SAP interface, Zend unit, Runtime implants)

ext/curl ext/mysqli ext/mysqlnd_plugin

Borg technology extension

mysqlndmysqlnd mysqlndlibcurl

ext/xml

libxml

The speaker says...
Few PHP users can write C code. PHP users love the
convenience of a script language. Therefore it is desired to
expose C APIs to the userland.

PHP is like the borg: it assimilates all technology it finds
useful. PHP has been designed to assimilate C libraries.
Assimilated C libraries are called extensions. Most PHP
extensions expose a PHP API for use in *.php files. Mysqlnd
is a C library. A mysqlnd plugin is yet another C library
implemented as a PHP extension. Nothing stops you from
writing a mysqlnd plugin which exposes the mysqlnd
plugin API to PHP users - for use in *.php files!

What borg technology can do!
class proxy extends mysqlnd_plugin_connection {
 public function connect($host, ...) {

/* security */
$host = '127.0.0.1';
return parent::connect($host);

 }
 public function query($query, ...) {

error_log($query);
return parent::query($query);

 }
}
mysqlnd_plugin_set_conn_proxy(new proxy());
(auto_prepend.inc.php)

any_php_mysql_app_main();
(index.php)

The speaker says...
Guess what will happen when running the fictive
code!

The application will be restricted to connect to '127.0.0.1'.
Assuming the proposed ext/mysqlnd_plugin is the only
active myqlnd plugin, there is no way for the
application to work around this restriction. Same
about the query logging.

It works with all PHP applications. And, it does not
require any application changes.

Userspace plugin motivation

 Availability: maximum
 Creative potential: endless
 Ease of use: absolutely
 Fun factor: tremendous

 US citizen: you must read and comply to the
following security rules

• Security, Limitations, Chaining: consult homeland security
• The C API has not been designed to be exposed to the userspace
• Continued on page PHP_INT_MAX.

The speaker says...
It is about rapid protoyping, it is about simplified
technology access.

If you ever plan to work with userspace mysqlnd plugins ask
yourself twice if it may be better to contract a C developer.
The internal mysqlnd API has not been designed as a plugin
API for C, and mysqlnd methods have certainly never
been designed to be exposed to the userspace! If you
give users access to C stuff, as proposed, they can
easily crash PHP.

Starting w. ext/mysqlnd_plugin

 How to create an extension? Choose!

 Ueber-lady book (ULB) templates
 Extension generators
 Striping an existing extension
 Extension skeleton

The speaker says...
BUY BUY – The Über-Lady book (ULB) – BUY BUY

Sara Golemon,
Extending and Embedding PHP

It will teach you all you need to develop PHP extensions.
Without that wonderful book mysqlnd development would
have taken twice as long as it took!

Repetition: MINIT of a plugin
static PHP_MINIT_FUNCTION(mysqlnd_plugin) {
 /* globals, ini entries, resources, classes */

 /* register mysqlnd plugin */
 mysqlnd_plugin_id = mysqlnd_plugin_register();
 conn_m = mysqlnd_get_conn_methods();
 memcpy(org_conn_m, conn_m,

sizeof(struct st_mysqlnd_conn_methods));

 conn_m->query = MYSQLND_METHOD(mysqlnd_plugin_conn, query);
 conn_m->connect = MYSQLND_METHOD(mysqlnd_plugin_conn, connect);
}
(my_php_mysqlnd_plugin.c)

enum_func_status MYSQLND_METHOD(mysqlnd_plugin_conn, query)(/* ...
*/) {
 /* ... */
}
(my_mysqlnd_plugin.c)

The speaker says...
Jippie - ext/mysqlnd_plugin is half way done!

There is absolutely nothing new here. The purpose of
the slide is to recall basics on mysqlnd plugins. We are
putting pieces together to outline an extension as a whole.

Task analysis: C to userspace
class proxy extends mysqlnd_plugin_connection {
 public function connect($host, ...) { .. }
}
mysqlnd_plugin_set_conn_proxy(new proxy());

 write a class "mysqlnd_plugin_connection" in C
(->ULB)

 accept and register proxy object through
"mysqlnd_plugin_set_conn_proxy()"
(->ULB)

 call userspace proxy methods from C
(-> ULB or - optimization - zend_interfaces.h)

The speaker says...
References to "ULB" aim to point you to the book of
the ueber-lady. Sarah Golemons' excellent book
"Extending and Embedding PHP" (ULB) will teach you in
depth how to write the code for those tasks. Because the
book is truly outstanding - although a bit dated - we will
not discuss simple tasks marked with "-> ULB"

Userspace object methods can either be called using
call_user_function() as desribed in the ULB or you go one
little step further down the ladder, closer to the Zend Engine
and you hack zend_call_method().

Calling userspace
MYSQLND_METHOD(my_conn_class,connect)(
 MYSQLND *conn, const char *host /* ... */ TSRMLS_DC) {

 enum_func_status ret = FAIL;
 zval * global_user_conn_proxy = fetch_userspace_proxy();

 if (global_user_conn_proxy) {
/* call userspace proxy */
ret = MY_ZEND_CALL_METHOD_WRAPPER

 (global_user_conn_proxy, host, /*...*/);
 } else {

/* or original mysqlnd method = do nothing, be transparent */
ret = org_methods.connect(conn, host, user, passwd,

 passwd_len, db, db_len, port,
 socket, mysql_flags TSRMLS_CC);

 }
 return ret;
}
(my_mysqlnd_plugin.c)

The speaker says...
This is the hearth of linking userspace and C plugin
world. Make sure you understand it. No further
comments, you need to eat and learn it.

Repetition - how we get here:
• user runs MySQL query through any PHP MySQL API
• mysqlnd calls query method

Simple arguments
MYSQLND_METHOD(my_conn_class,connect)(/* ... */, const char *host,
/* ...*/) {
 /* ... */
 if (global_user_conn_proxy) {

/* ... */
zval* zv_host;
MAKE_STD_ZVAL(zv_host);
ZVAL_STRING(zv_host, host, 1);
MY_ZEND_CALL_METHOD_WRAPPER

 (global_user_conn_proxy, zv_retval, zv_host /*, ...*/);
zval_ptr_dtor(&zv_host);
/* ... */

 }
 /* ... */
}
(my_mysqlnd_plugin.c)

The speaker says...
A standard task when calling when linking C and userspace
are data type convertions. C variables need to be wrapped
into PHP variables. PHP variables are represented
through zval structs on the C level.

Passing all kinds of numeric and string C values to
the userspace is quite easy. The ULB has all details.

Structs as arguments
MYSQLND_METHOD(my_conn_class, connect)(
 MYSQLND *conn, /* ...*/) {
 /* ... */
 if (global_user_conn_proxy) {

/* ... */
zval* zv_conn;
ZEND_REGISTER_RESOURCE

 (zv_conn, (void *)conn, le_mysqlnd_plugin_conn);
MY_ZEND_CALL_METHOD_WRAPPER

 (global_user_conn_proxy, zv_retval, zv_conn,/*, ...*/);
zval_ptr_dtor(&zv_conn);
/* ... */

 }
 /* ... */
}

The speaker says...
The first argument of many mysqlnd methods is a C
"object". For example, the first argument of the connect()
method is a pointer to MYSQLND. The struct MYSQLND
represents a mysqlnd connection object.

The mysqlnd connection object pointer can be compared to
a standard I/O file handle. Like a standard I/O file
handle a mysqlnd connection object shall be linked
to the userspace using the PHP resource variable
type.

Are we done ?!
class proxy extends mysqlnd_plugin_connection {
 public function connect($conn, $host, ...) {

/* "pre" hook */
printf("Connecting to host = '%s'\n", $host);
return parent::connect($conn);

 }

 public function query($conn, $query) {
/* "post" hook */
$ret = parent::query($conn, $query);
printf("Query = '%s'\n", $query);
return $ret;

 }
}
mysqlnd_plugin_set_conn_proxy(new proxy());

The speaker says...
We are almost done. One piece is missing, though. PHP
users must be able to call the parent implementation of an
overwritten method. To be able to call a parent
implementation you need one, right? Let's hack it!

BTW, thanks to subclassing you may choose to refine only
selected methods and you can choose to have "pre" or
"post" hooks. It is all up to you.

Buildin class
PHP_METHOD("mysqlnd_plugin_connection", connect) {
 /* ... simplified! ... */
 zval* mysqlnd_rsrc;
 MYSQLND* conn;
 char* host; int host_len;
 if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rs",

 &mysqlnd_rsrc, &host, &host_len) == FAILURE) {
RETURN_NULL();

 }
 ZEND_FETCH_RESOURCE(conn, MYSQLND* conn, &mysqlnd_rsrc, -1,

"Mysqlnd Connection", le_mysqlnd_plugin_conn);
 if (PASS == org_methods.connect(conn, host, /* simplified! */
TSRMLS_CC))

RETVAL_TRUE;
 else

RETVAL_FALSE;
}
(my_mysqlnd_plugin_classes.c)

The speaker says...
The code should bare no surprise. What you see is standard
PHP C infrastructure code to call the original mysqlnd
method. As usual, the ULB has all the details for you.

The End: implementors wanted!

 Those who have stated their name at the beginning:

Would you mind hacking
PECL/mysqlnd_plugin for me?

See you at the milk bar!

The speaker says...
From the IPC Spring 2010 (a PHP conference in Berlin): to
my own surprise a couple of companies showed
interest in hacking mysqlnd plugins. Most of them
want to open-source the development.

If you have any question or would like to participate in any
potential development, feel free to contact me
(ulf.wendel@sun.com). I'll try to get people in touch.

And, of course, we'll try to answer all technical questions.

Sugar!
class global_proxy extends mysqlnd_plugin_connection {
 public function query($conn, $query) {

printf("%s(%s)\n", __METHOD__, $query);
return parent::query($conn, $query);

 }
}
class specific_proxy extends mysqlnd_plugin_connection {
 public function query($conn, $query) {

printf("%s(%s)\n", __METHOD__, $query);
$query = "SELECT 'mysqlnd is cool'";
return parent::query($conn, $query);

 }
}

mysqlnd_plugin_set_conn_proxy(new global_proxy());
$conn1 = new mysqli(...);
$conn2 = new PDO(...);

mysqlnd_plugin_set_conn_proxy(new specific_proxy(), $conn2);
(i_love_mysqlnd.php)

The speaker says...
Wait - every good movie has a trailer!

Mysqlnd allows a plugin, such as the fictive
ext/mysqlnd_plugin, to associate arbitrary data with a
connection. The data storage can be used to hold a pointer
to a connection specific userspace proxy object.

Sugar, sugar!

class proxy extends mysqlnd_plugin_connection {
 public function connect($host /*... */) {

$conn = @parent::connect($host /*... */);
if (!$conn) {

my_memcache_proxy_set("failed_host", $host);
$failover_hosts = my_memcache_proxyget("failover_hosts");
foreach ($failover_hosts as $host) {

$conn = @parent::connect($host /* ... */);
if ($conn) {

my_memcache_proxy_set("working_host", $host);
break;

} else {
my_memcache_proxy_set("failed_host", $host);

}
}

}
return $conn;

 }
}
(client_failover_with_config.php)

The speaker says...
One of the disadvantages of a mysqlnd plugin based client
proxy approach is the non-persisent memory of the mysqlnd
plugin. The mysqlnd plugin cannot recall decisions made
earlier. One plugin cannot share information with another
one.

But you may ask your Memcache deamon to help out!

Yeah, a classical hack to maintain a state...

Sugar, sugar Baby!
$pdo = new PDO(...);
$proxy = new mysqlnd_plugin_connection();
$proxy->getThreadId(mysqlnd_plugin_pdo_to_conn($pdo));
(i_do_not_love_pdo.php)

The speaker says...
In our discussion we have looked at the userspace proxy
and the default proxy class from of our fictive
ext/mysqlnd_plugin as a passive component which gets
called through mysqlnd.

Though, there is no reason why we would not be allowed to
call proxy methods directly as long as we can provide the
necessary arguments. For example, we can use the proxy as
shown above to obtain the thread id of a PDO MySQL
connection. This is something that is not possible through
the standard PDO API.

THE END

Credits: Andrey Hristov, Contact: ulf.wendel@sun.com

mailto:ulf.wendel@sun.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

